• Title/Summary/Keyword: Leaf area determination

Search Result 25, Processing Time 0.023 seconds

Steam Treated Sawdust as Soilless Growing Media for Germination and Growth of Horticulture Plant

  • Jung, Ji Young;Ha, Si Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.857-871
    • /
    • 2017
  • The major substrates used in soilless growing media are peat moss and perlite, where peat moss is a limited and expensive natural resource. Determination of appropriate substrates based on technical and economic feasibility is the vital aspect of research and the key to success in any soilless production system. This research work was performed to evaluate different low-cost and sustainable alternative substrate as soilless growing media for horticulture plant. The objective of this study was to compare the effect of sawdust species and steam treatment, for physico-chemical properties and growth of horticultural plant. This study involves the physical and chemical characterization and growth test of four substrate (pine sawdust, oak sawdust, steamed pine sawdust and steamed oak sawdust) in order to evaluate their use as components of growing media. Steamed oak sawdust ($121^{\circ}C$, 30 min) showed adequate physical and chemical properties compared to peat moss for their use as growing media. The growing media were prepared using different mixture proportion to grow Brassica campestris L., Festuca arundinacea and Lespedeza cyrtobotrya Miq. The highest germination, stem length and leaf area of Brassica campestris L., Festuca arundinacea and Lespedeza cyrtobotrya were observed in 30 minute steamed oak sawdust mixture growing media. The steam treatment condition of sawdust used in the growing media significantly positive affected the germination, the stem length and the leaf area.

Application of UAV-based RGB Images for the Growth Estimation of Vegetable Crops

  • Kim, Dong-Wook;Jung, Sang-Jin;Kwon, Young-Seok;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.45-45
    • /
    • 2017
  • On-site monitoring of vegetable growth parameters, such as leaf length, leaf area, and fresh weight, in an agricultural field can provide useful information for farmers to establish farm management strategies suitable for optimum production of vegetables. Unmanned Aerial Vehicles (UAVs) are currently gaining a growing interest for agricultural applications. This study reports on validation testing of previously developed vegetable growth estimation models based on UAV-based RGB images for white radish and Chinese cabbage. Specific objective was to investigate the potential of the UAV-based RGB camera system for effectively quantifying temporal and spatial variability in the growth status of white radish and Chinese cabbage in a field. RGB images were acquired based on an automated flight mission with a multi-rotor UAV equipped with a low-cost RGB camera while automatically tracking on a predefined path. The acquired images were initially geo-located based on the log data of flight information saved into the UAV, and then mosaicked using a commerical image processing software. Otsu threshold-based crop coverage and DSM-based crop height were used as two predictor variables of the previously developed multiple linear regression models to estimate growth parameters of vegetables. The predictive capabilities of the UAV sensing system for estimating the growth parameters of the two vegetables were evaluated quantitatively by comparing to ground truth data. There were highly linear relationships between the actual and estimated leaf lengths, widths, and fresh weights, showing coefficients of determination up to 0.7. However, there were differences in slope between the ground truth and estimated values lower than 0.5, thereby requiring the use of a site-specific normalization method.

  • PDF

Estimation of Onion Leaf Appearance by Beta Distribution (Beta 함수 기반 기온에 따른 양파의 잎 수 증가 예측)

  • Lee, Seong Eun;Moon, Kyung Hwan;Shin, Min Ji;Kim, Byeong Hyeok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.78-82
    • /
    • 2022
  • Phenology determines the timing of crop development, and the timing of phenological events is strongly influenced by the temperature during the growing season. In process-based model, leaf area is simulated dynamically by coupling of morphology and phenology module. Therefore, the prediction of leaf appearance rate and final leaf number affects the performance of whole crop model. The dataset for the model equation was collected from SPA R chambers with five different temperature treatments. Beta distribution function (proposed by Yan and Hunt (1999)) was used for describing the leaf appearance rate as a function of temperature. The optimum temperature and the critical value were estimated to be 26.0℃ and 35.3℃, respectively. For evaluation of the model, the accumulated number of onion leaves observed in a temperature gradient chamber was compared with model estimates. The model estimate is the result of accumulating the daily increase in the number of onion leaves obtained by inputting the daily mean temperature during the growing season into the temperature model. In this study, the coefficient of determination (R2) and RMSE value of the model were 0.95 and 0.89, respectively.

Yield Loss Assessment and Determination of Control Thresholds for Powdery Mildew of Eggplant (Solanum melongena) (시설 가지 흰가루병 발생정도에 따른 수량변화와 경제적 방제수준 설정)

  • Kim, Ju-Hee;Lee, Ki-Kwon;Yim, Ju-Rak;Kim, Ju;Choi, In-Young;Jang, Su-Ji;Kim, Jin-Ho;Song, Young-Ju
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.2
    • /
    • pp.145-151
    • /
    • 2016
  • This study was carried out to develop the economic thresholds for powdery mildew on eggplant. To investigate the relationship between powdery mildew incidence degree and yield, experimental plots with ten treatments as the initial disease degree were established. Disease severity exhibited negative and significant correlation with fruit weight and number of fruit. There existed close correlation between rate of diseased leaf area and yields in the greenhouse (control with fungicide Y = -36.5X+2938.5 $R^2=0.91$ $r=-0.913^*$, no fungicide: Y = -29.57X+2574.4 $R^2=0.73$ $r=-0.858^*$). There existed close correlation between rate of diseased leaf area and yield loss in the greenhouse (Y = 1.27X-2.4 $R^2=0.88$ $r=0.91^*$). The economic thresholds for powdery mildew on eggplant was below 14.7% rate of diseased leaf area per plant in the greenhouse.

Development of Crop Growth Model under Different Soil Moisture Status

  • Goto, Keita;Yabuta, Shin;Sakagami, Jun-Ichi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.19-19
    • /
    • 2019
  • It is necessary to maintain stable crop productions under the unsuitable environments, because the drought and flood may be frequently caused by the global warming. Therefore, it is agent to improve the crop growth model corresponded to soil moisture status. Chili pepper (Capsicum annuum) is one of the useful crop in Asia, and then it is affected by change of precipitation in consequence drought and flood occur however crop model to evaluate water stresses on chili pepper is not enough yet. In this study, development of crop model under different soil moisture status was attempted. The experiment was conducted on the slope fields in the greenhouse. The water level was kept at 20cm above the bottom of the container. Habanero (C. chinense) was used as material for crop model. Sap bleeding rate, SPAD value, chlorophyll content, stomatal conductance, leaf water potential, plant height, leaf area and shoot dry weight were measured at 10 days after treatment (DAT) and 13 DAT. Moreover, temperature and RH in the greenhouse, soil volume water contents (VWC) and soil water potential were measured. As a result, VWC showed 4.0% at the driest plot and 31.4% at the wettest plot at 13 DAT. The growth model was calculated using WVC and the growth analysis parameters. It was considered available, because its coefficient of determination showed 0.84 and there are significant relationship based on plants physiology among the parameters and the changes over time. Furthermore, we analyzed the important factors for higher accuracy prediction using multiple regression analysis.

  • PDF

Design of Energy Model of Greenhouse Including Plant and Estimation of Heating and Cooling Loads for a Multi-Span Plastic-Film Greenhouse by Building Energy Simulation (건물에너지시뮬레이션을 활용한 연동형 온실 및 작물에너지모델 설계 및 이의 냉·난방부하 산정)

  • Lee, Seung-No;Park, Se-Jun;Lee, In-Bok;Ha, Tae-Hwan;Kwon, Kyeong-Seok;Kim, Rack-Woo;Yeo, Uk-Hyeon;Lee, Sang-Yeon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.123-132
    • /
    • 2016
  • The importance of energy saving technology for managing greenhouse was recently highlighted. For practical use of energy in greenhouse, it is necessary to simulate energy flow precisely and estimate heating/cooling loads of greenhouse. So the main purpose of this study was to develope and to validate greenhouse energy model and to estimate annual/maximum energy loads using Building Energy Simulation (BES). Field experiments were carried out in a multi-span plastic-film greenhouse in Jeju Island ($33.2^{\circ}N$, $126.3^{\circ}E$) for 2 months. To develop energy model of the greenhouse, a set of sensors was used to measure the greenhouse microclimate such as air temperature, humidity, leaf temperature, solar radiation, carbon dioxide concentration and so on. Moreover, characteristic length of plant leaf, leaf area index and diffuse non-interceptance were utilized to calculate sensible and latent heat exchange of plant. The internal temperature of greenhouse was compared to validate the greenhouse energy model. Developed model provided a good estimation for the internal temperature throughout the experiments period (coefficients of determination > 0.85, index of agreement > 0.92). After the model validation, we used last 10 years weather data to calculate energy loads of greenhouse according to growth stage of greenhouse crop. The tendency of heating/cooling loads change was depends on external weather condition and optimal temperature for growing crops at each stage. In addition, maximum heating/cooling loads of reference greenhouse were estimated to 644,014 and $756,456kJ{\cdot}hr^{-1}$, respectively.

Determination of Proper Application Timing and Frequency for Management of Tomato Leaf Mold Disease by Commercially Available Microbial Preparations (미생물제제 이용 토마토 잎곰팡이병 방제시기 및 살포회수 결정)

  • Kang, Beom-Ryong;Ko, Sug-Ju;Kim, Do-Ik;Choi, Duck-Soo;Kim, Seon-Gon
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.142-147
    • /
    • 2011
  • In order to develop a environmentally friendly control protocol for managing tomato leaf mold disease in the field, we employed bacteria- and fungi-based commercially available microbial preparations. The field experiment was conducted from April to July in 2010. Average incidence rates tomato leaf mold caused by Fulvia fulva were 13.1% at the two plastic houses located in Jangsung, Jeonnam area. Initially 11 microbial preparations were tested for antifungal activity against F. fulva in vitro. Among them, 7 selected preparations showed to be inhibited the mycelial growth of the fungal pathogen over 50%. Four microbes suppressed disease incidence as much 50% under greenhouse condition. Eventually in the field two microbial products including Bacillus subtilis GB-0365 and B. subtilis KB-401 respectively were showed control value up to 71.8% for four times sprays from 20 days to 70 days after transplanting. Furthermore, the control value of three times spray program demonstrated 79.3%. Efficacy of the three and four spray programs was more effective than that of non-spray control treatment. Our results indicated that adjustment of application method of commercially available microbial preparation could be used to control a target plant disease as an effective and efficient crop protection system for organic farming.

Biomass Estimation of Phyllostachys pubescens Stands in KFRI, Southern Forest Research Center (맹종죽 시험림의 현존량 추정에 관한 연구)

  • Lee, Kwang Soo;Jung, Su Young;Son, Yeong Mo;Lee, Kyeong Hak;Bae, Eun Ji;Yun, Seok Lak
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.138-147
    • /
    • 2012
  • For biomass estimation of Phyllostachys pubescens stands by optimal survey method we established 9 bamboo sample plots in the research forests of KFRI (Korea Forest Research Institute). The dry weight of culm segment determined by relative heights of total bamboo height show us two groups of 1st to 5th culm segment (up to 0~55% culm of tree height from the bottom area) and 6th to 8th culm segment (55~100%) by the results of cluster analysis for dry weight ratio. This results show that upper and lower part of 55~70% reference height from the bottom area against total culm height can be used in obtaining 1 kg of a sample bamboo, respectively, rather than 2.0 m stem segments of other forest tree species. In above-ground biomass estimation by $W=aD+bD^2$ having the highest coefficient of determination in this study, above ground stand biomass was 57.77 ton/ha (culm 40.47 ton/ha, branch 9.29 ton/ha, and leaf 8.01 ton/ha) of which 70% was contributed by culm component followed by branch (16%) and leaf (14%). Below-ground biomass was 53.35 ton/ha in total.

Selection Indices to Identify Drought-tolerance and Growth Characteristics of the Selected Korean Native Plants (자생식물로부터 내건성 식물의 최적인자 선발과 생육특성)

  • Im, Hyeon Jeong;Song, Hyeon Jin;Jeong, Mi Jin;Seo, Yeong Rong;Kim, Hak Gon;Park, Dong Jin;Yang, Woo Hyung;Kim, Yong Duck;Choi, Myung Suk
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.73-82
    • /
    • 2016
  • Best drought tolerance index was determined through statistics analysis and growth appearance of drought tolerant plants was determined by cultivation in pot and sloping land. For determination of best drought tolerant indicators, RD(Resistant dry days), LD(Leaf area), UTR(Unit transpiration), RWC(Relative water content), RWL(Relative water loss), LA(Leaf area), SN(Stoma unmber) and SA(Stoma area) were carried out by correlation and PCA analysis. RWL and UTR were affected on plant drought tolerance according to comparison among six indices for resistant dry days. The PCs axes separated SA, LA, RD and RWC and SN. UTR was negatively correlated with SA, RWL were also negatively correlated with RWC and SN. RWL and UTR were proved best selection indicator for the selection of drought tolerant species. Ulmus parvifolia, Bidens bipinnata, Patrinia villosa, Kummerowia striata, Arundinella hirta, Artemisia gmelini etc. were selected drought tolerant plants. Shoot growth appearance of drought resistant plants was differed pot and sloping land. Shoot growth and leaf number was no significant differences between the pot and sloping land. However, root growth of drought tolerant plants was all the difference between two cultivation. T/R ratio of drought tolerant plants was also found a big difference. T/R ratio of drought tolerant plants in sloping land was lower than that of pot. These results will be served efficiently plant breeding.

The Growth of Hosta Longipes by Management Methods on Artificial Ground Greening (인공지반녹지의 토심 및 관리형태에 따른 비비추의 생육)

  • Choi, Hee-Sun;Lee, Yong-Beom;Lee, Hye-Jin;Kim, Kwi-Gon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • Artificial ground greening, which is considered as a way for the greening of cities, should be constructed easily and maintained continuously. Thus it is necessary to use light soils for keeping in flexible formation and light load. And the garden should be managed optimally taking account for the characteristics of the soil and plant. But in most landscape green area, they are not under management. Mostly they are occasionally irrigated without nutrient by hand-operating. So this study was conducted to investigate plant growth by management methods and soil depth(15cm, 30cm). As a results of the different methods of management had effect on the plant growth and on the rate of flowering. When Hosta longipes were grown in different three management methods, control(rainfall), periodical irrigation, and nutri-irrigation(fertigation), the content of chlorophyll, the plant growth and the rate of flowering were higher in nutri-irrigation (fertigation) treatment than those in control(rainfall) and periodic irrigation. And nutrient contents of leaf are also higher. Between 15cm and 30cm soil depth, the plant growth of 15cm soil depth is better than that of 30 soil depth. According to these results on artificial ground greening, determination of optimal soil depth by plant species is required, And a specialist for nutrient management is demanded.