• Title/Summary/Keyword: Leaf Senescence

Search Result 150, Processing Time 0.028 seconds

Variation of Alternative and Cytochrome Respiration during Ripening in Rice Leaves

  • Lee, Kwang-hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.4
    • /
    • pp.301-304
    • /
    • 2002
  • The variation of alternative and cytochrome respiration during ripening in rice leaves (Oryza sativa L. cv. Takanari) was examined. The capacity of both respiration pathway was measured by inhibitor titration method using gas-phase oxygen electrodes. The alternative respiration rate decreased from 31.3% of the total respiration rate at around heading to 11.7% at 34 days after heading in the first fully expanded leaf from the top, and further to 6.4 % at 34 days after heading in the fourth leaf from the top. In contrast, the proportion of cytochrome respiration to total respiration increased with leaf senescence. The possible cause of alternative respiration as either an increase in inefficient respiration or a decrease in growth efficiency during ripening was discussed.

Study on the yield and delayed stem senescence of soybean varieties in late sowing cultivation

  • Suzuki, Daisuke;Gunji, Kento;Higo, Masao;Isobe, Katsunori
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.201-201
    • /
    • 2017
  • Delayed stem senescence of soybean is a phenomenon of retarded leaf and stem yellowing, where plants maintain a high stem water content and remain chlorophyll in leaf and stem at maturity stage. This phenomenon was one of the most important physiological disease in Japanese soybean cultivation. The occurrence of delayed stem senescence was affected by sowing time. And the most of Japanese field, soybean seeds were sowed in June. June is the rainy season in Japan, and the soil water content of field become higher in this season. In this study, the effects of late sowing (July sowing) on the yield and the occurrence of delayed stem senescence in soybean cultivars Enrei, Tachinagaha and Ayakogane were examined from 2013 to 2015, in the experimental farm at Nihon University (Fujisawa-city, Kanagawa, Japan). The seeds of all cultivars were sowed in June (June-normal density plot) or July (July-normal density plot, July-high density plot and July-super high density plot) in field experiment. The pot experiments were carried out in 2014. In all cultivars, the yield of July-high density plot and July-super high density were higher than that of June normal density plot. And the yield of June-normal density plot was the same as that of July-normal density plot. In all cultivars, the occurrence of delayed stem senescence was increased by seeding in June sowing. And in July sowing plots, no significance difference in the occurrence of delayed stem senescence was observed among density plots. One of reason about the increasing the occurrence of delayed stem senescence in June-normal plot was the increasing of the damaged seeds by bean bugs. Add one of reason about the decreasing of the occurrence of delayed stem senescence of July plots was the decreasing of the amount of cytokinin supplied from root to top and water stress after the flowering time was improved compared with the June plot. In conclusion, the yield of Enrei, Tachinagaha and Ayakogane were not changed by changing the sowing time from June to July. In all cultivars, the occurrence of delayed stem senescence were decreasing by seeding in July.

  • PDF

Effects of Leaf and Pod Removal on Photosynthesis and Assimilate Partition in Soybean (적엽ㆍ제협처리가 콩의 광합성과 동화물질 배분에 미치는 영향)

  • Woong Tae, Kim;Rak Chun, Seong;Harry C, Minor
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.2
    • /
    • pp.159-165
    • /
    • 1993
  • To clarify the effects of sink demand for assimilate on leaf photosynthetic rate, tissue composition, and leaf senescence of soybean [Glycine max (L.) Merr.] J plants, pod and leaf tissues were removed at growth stage $R^3$. Plant responses were measured every 10days from 2 through 42days following treatment. Leaves of depodded plants exhibited increased starch and chlorophyll contents and specific leaf weight. Stomatal resistance was also increased and leaf photosynthetic rate was reduced. Dry weight of vegetative tissues except leaves was increased by pod removal. Leaf removal resulted in a decreased starch content of leaves from 22 to 42days after treatment and that of roots at all sampling times. Specific leaf weight was decreased while leaf photosynthetic rate was increased. Stomatal resistance and chlorophyll content were little affected. Weight per seed was decreased 3.0% by leaf removal. Except for the seed, tissue protein contents were increased by pod removal but decreased by leaf removal, however, seed protein content was not affected by either. Apparent senescence was delayed by depodding. Both apparent and functional senescence were accelerated by leaf removal.

  • PDF

Effects of Light on Disassembly of Chloroplast during Senescence of Detached Leaves in Phaseolus vulgaris

  • Lee Dong-Hee;Hong Jung-Hee;Kim Young-Sang
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.69-80
    • /
    • 1997
  • Effects of light on leaf senescence of Phaseolus vulgaris were investigated by measuring the disassembly of chlorophyll-protein complexes in detached leaves which had been kept in the dark or under light. The loss of chlorophyll accompanied by degradation of chlorophyll-protein complexes. PSI (photosystem I) complex containing LHCI (light harvesting complex of PSI) apoproteins was rapidly decreased after the early stage of dark-induced senescence. RC(reaction center)-Core3 was slightly increased until 4 d and slowly decreased thereafter. As disassembly of LHCII trimer progressed after the late stage of senescence, there was a steady increase in the relative amount of SC(small complex)-2 containing LHCII monomer. On the other hand, white and red light adaptation caused the structural stability of chlorophyll-protein complexes during dark-induced senescence. Particularly, red light was more effective in the retardation of LHCII breakdown than white light, whereas white light was slightly effect in protecting the disassembly of PSI complex compared to red light. These results suggest, therefore, that light may be a regulatory factor for stability of chlorophyll-protein complexes in the senescent leaves.

  • PDF

Effects of Jasmonic Acid and Wounding on Polyphenol Oxidase Activity in Senescing Tomato Leaves

  • Jin, Sun-Young;Hong, Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.4
    • /
    • pp.231-240
    • /
    • 2000
  • Effects of Jasmonic Acid and Wounding on Polyphenol Oxidase Activity in Senescing Tomato Leaves The effects of jasmonic acid(JA) and wounding on polyphenol oxidase(PPO) during leaf senescence was investigated by measuring the PPO activity in detached tomato(Lycopersicon esculentum Mill.) leaves of two-week-old seedlings. The PPO activity in the detached senescing leaves increased significantly in the dark. The leaf segments responded to the application of JA with accelerated senescence, as indicated by the loss of chlorophyll and rapid increase in the PPO activity. The senescence-promoting action of JA differed in the light and dark. Wounding the detached senescing leaves by scraping surface segments or making punctures with needles considerably delayed the loss of chlorophyll and had a significant effect on the PPO activity, the amounts of which were roughly proportional to the intensity of the wounding. In the dark, the combination of wounding plus JA resulted in stable levels of chlorophyll and PPO. JA and ABA acted similarly in both unwounded and wounded leaves, however, the amount of chlorophyll and PPO in the wounded segments was always higher than in the respective controls. JA was found to eliminate the senescence-retarding action of benzyladenine. In a histochemical localization test, the PPO activity was found to be localized in the cell walls of the parenchyma tissue, thereby indicating moderate cytoplasmic reactions. In the JA-treated plants, the PPO activity was intense in the cells of the cortex and phloem parenchyma. Accordingly, based on these observations it would appear that PPO is a component of a defense response maker, whereas JA plays an integral role in the intracellular signal transduction involved in inducible defense mechanisms.

  • PDF

Effects of Foliar-Sprayed Benzyladenine and Diphenylurea on Leaf Senescence, Grain Yield and Some Characters Related to Grain Quality of Rice (벼에서 Benzyladenine과 Diphenylurea의 엽면살포가 잎의 노화, 수량 및 미질관련형질에 미치는 영향)

  • 이변우;명을재;남택수;이정양
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.4
    • /
    • pp.323-330
    • /
    • 1994
  • Benzyladenine(BA) and Diphenylurea(DPU) at 10ppm level were foliar-applied one to three times at an interval of 10 days from heading stage of rice variety, Dongjinbyeo. One time treatment of both cytokinins did not delayed leaf senescence substantially, but consecutive treatments of two to three times markedly retarded leaf senescence. Leaf senescence retarding effects were greater in BA than DPU. Ripened grain ratio, grain weight and grain yield were not improved by the treatments. BA treatments increased the percentage of green and white belly kernels with no effects on opaque and white core kernels. BA and DPU treatments did not altered amylose content, but BA treatments significantly decreased protein content of polished rice. Consecutive treatments of BA and DPU twice or three times at an interval of 10 days from heading increased oil content by 30 to 78% as compared to non-treated control, but one time treatment at any stage did not enhance it of polished rice. Fatty acid composition was slightly altered in favor of unsaturated fatty acid by BA and DPU treatments.

  • PDF