• Title/Summary/Keyword: Leaf Production

Search Result 1,396, Processing Time 0.029 seconds

A Basic Study on Leaf and Stem Production of Angelica acutiloba

  • Choi, Seong-Kyu;Yun, Kyeong-won;Chon, Sang-Uk;Lee, Jong-Ill;Seo, Young-Nam;Seo, Kyoung-Sun;Choi, Kyeong-Ju
    • Plant Resources
    • /
    • v.7 no.3
    • /
    • pp.233-237
    • /
    • 2004
  • This study was conducted to develop effective production system in greenhouse for leaves and stems of Angelica acutiloba by using connect pots in 2003 and 2004. Seed germination rate and plant biomass of Angelica acutiloba collected in 2004 were higher than those harvested in 2003. Germination rate of Angelica acutiloba seeds collected in 2003 was 10%, while germination rate of seeds collected in 2004 was above 90%. Especially, plant growth and yield of Angelica acutiloba grown in connect pots sized with 4 ${\times}$ 4 ${\times}$ 5cm(length ${\times}$ width ${\times}$ height) were the highest. These results indicate that leaf and stem production of Angelica acutiloba can be improved by using connect pots and optimizing seed collecting time in greenhouse.

  • PDF

Response of Leaf Water Potential and Growth Characteristics to Irrigation Treatment in Soybean

  • Lee, Jeong-Hwa;Seong, Rak-Chun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.2
    • /
    • pp.81-88
    • /
    • 2003
  • Soybeans [Glycine max (L.) Merr.] are frequently exposed to unfavorable environments during growing seasons and water is the most important factor limiting for the production system. The purpose of this study was to determine the leaf water potential changes by irrigation, and to evaluate the relationships of leaf water potential, growth and yield in soybeans. Three soybean cultivars, Hwangkeumkong, Shinpaldalkong 2, and Pungsannamulkong, were planted in growth chamber and field with irrigated treatments. Leaf water potential of three soybean cultivars was positively correlated with leaf water content during vegetative and reproductive growth stages in growth chamber and field experiments. Leaf water potentials measured for three soybean cultivars under growth chamber were higher than those of under field conditions. Higher leaf water potential with irrigated plots under field was observed compared to conventional plots during reproductive growth stages. Leaf water potentials of three soybean cultivars were continually decreased during reproductive growth stages under field and there was no significant difference among them. Number of leaves, leaf water content, pod dry weight, number of seeds and seed dry weight with irrigated plots were higher than those of conventional plots. The results of this study suggested that leaf water potential could be used as an important growth indicator during the growing season of soybean plants.

Effect of the Amount of Fertilizer, Plant Density, and Halvesting Time on the Production of Tobacco leaf Protein (시비량, 재식밀도, 수확시기가 담배 잎단백질 생산에 미치는 영향)

  • 우억구;이학수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.15 no.1
    • /
    • pp.75-89
    • /
    • 1993
  • Effect of the amount of fertilizer, plant density, and harvesting time on the production of tobacco leaf protein and fresh biomass was investigated. Flue-cured tobacco(M tabacum, L., cv. NC 82) seedlings were transplanted in the field dressed 200kg N per ha at 1$\times$105, 3$\times$105, 5$\times$105, 7$\times$105 plants per ha, and were harvested at the time when 6 and 10 weeks after transplanting, respectively. Harvest at 10 weeks after transplanting increased greatly number of leaves per plant and fresh weight of a plant, Precentage of senescent leaf weight, but significantly decreased fresh weight of a leaf and total protein contents g-1 fresh weight of leaf and stalk over the amount obtained from the harvest at 6 weeks after transplanting. Also, fresh leaf numbers of a plant, fresh weight of a leaf and of a plant, and total protein contents g-1 fresh weight of biomass were more decreased, but percentage of senescent leaf weight were remarkably increased under higher plant density. Therefore, it was seemed that harvesting at 6 weeks after transplanting under 1$\times$105 plant density per ha is more effective for producing higher yield of biomass and protein per plant than 10 weeks harvesting with 7$\times$105 population per ha. A trend was observed that biomass and protein yields per ha are positively correlated with plant population. Biomass yield per ha was the greatest at 7$\times$105 density(80.5t), but the peak of protein yield was at the near of 5$\times$105 population(2454kg as total protein) per ha on the regression curve. It was assumed that if tobacco plants are transplanted under 5$\times$105 plant density at the mid of May, and thereafter harvest at 6 weeks repeatedly during the growing season, it is possible to harvest 2~3 times per year, and to yield more 6.024kg of protein and over 140me1ric tons of fresh biomass ha 1 year 1 statistically in the korea tobacco growing regions.

  • PDF

Effect of Methyl Jasmonate on Ethylene Production in Mungbean Hypocotyls and Leaf Segments (녹두 하배축과 잎에서의 에틸렌 생성에 대한 Methyl Jasmonate의 효과)

  • 이규승
    • Journal of Plant Biology
    • /
    • v.37 no.4
    • /
    • pp.445-452
    • /
    • 1994
  • Effects of methyl jasmonate (MeJA) on ethylene production in mungbean (Phaseolus radiatus L.) hypocotyl and leaf segments were studied. Ethylene production in mungbean hypocotyl segments was decreased in proportion to MeJA concentrations and $450\;\mu\textrm{M}$ of MeJA showed 50% inhibitory effect. This inhibitory effect appeared after 3 h of incubation period and continued for 24 h. Inhibition of ethylene production by MeJA was due to the decrease in 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity. However, MeJA treatment had no effect on ACC content and ACC synthase activity. MeJA also inhibited auxin-induced ethylene production in hypocotyls. To investigate the mechanisms of the inhibitory effect of MeJA on the auxin-induced ethylene production, ACC synthase and ACC oxidase activity were examined after MeJA treatment. MeJA decreased the ACC content and ACC synthase activity as weD as ACC oxidase activity in the auxin-treated tissue. These results suggest that the inhibition of MeJA on auxin-induced ethylene production is not due to the direct inhibitory effect of MeJA on the ACC synthase, but to the inhibition of the ability of IAA to promote the synthesis of ACC synthase. In contrast, ethylene production from the detached mungbean leaves was stimulated by MeJA. The rate of ethylene production increased approximately 65% over the control after 12 h of incubation period by $4.5\;\mu\textrm{M}$ MeJA. When MeJA was applied to detached leaves along with IAA, the effect of MeJA appeared to be additive. In an effort to elucidate mechanisms of MeJA action on auxin-induced ethylene production in the leaf tissue, enzyme activities of ACC synthase and ACC oxidase were examined. MeJA stimulated ACC oxidase activity but did not affect ACC synthase activity in leaf tissue. Together, these results suggest that MeJA plays different roles in the ethylene production in the different mungbean tissues.issues.

  • PDF

Emission of NO2 Gas Causing Damage to Plants in an Acid Soil under Conditions Favorable for Denitrification

  • Suh, Sun-Young;Byeon, Il-Su;Lee, Yong-Se;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.288-295
    • /
    • 2013
  • Nitrogen dioxide ($NO_2$) gas damage on vegetable crops commonly occurs in plastic film houses where relatively large amounts of $NO_3{^-}$ are applied in acid soils. In acid soils, $HNO_2$ can be formed from the $NO_2{^-}$ accumulated during denitrification, and $NO_2$ can be evolved from the chemical self-decomposition of $HNO_2$. In this study, $NO_2$ gas production and its detrimental effects on plants were investigated in soils of various conditions to elucidate the mechanisms involved in the gas production. A silty loam soil was amended with $NO_3{^-}$ (500 mg N $kg^{-1}$) and glucose, and pH and moisture of the soil were adjusted respectively to 5.0 and 34.6% water holding capacity (WHC) with 0.01 M phosphate buffer. The soil was placed in a 0.5-L glass jar with strawberry leaf or $NO_2$ gas absorption badge in air space of the jar, and the jar was incubated at $30^{\circ}C$. After 4-5 days of incubation, dark burning was observed along the outside edge of strawberry leaf and $NO_2$ production was confirmed in the air space of jar. However, when the soil was sterilized, $NO_2$ emission was minimal and any visible damage was not found in strawberry leaf. In the soil where water or $NO_3{^-}$ content was reduced to 17.3% WHC or 250 mg N $kg^{-1}$, $NO_2$ production was greatly reduced and toxicity symptom was not found in strawberry leaf. Also in the soil where glucose was not amended, $NO_2$ production was significantly reduced. In soil with pH of 6.5, $NO_2$ was evolved to the level causing damage to strawberry leaf when the soil conditions were favorable for denitrification. However, compared to the soil of pH 5.0, the $NO_2$ production and its damage to plants were much less serious in pH 6.5. Therefore, the production of $NO_2$ damaging plants might be occurred in acid soils when the conditions are favorable for denitrification.

Effects of Auxins end Cytokinins on Callus Induction from Leaf Blade, Petiole, and Stem Segments of in Vitro-grown 'Sheridan' Grape Shoots

  • Seung-Heui kim;Kim, Seon-Kyu
    • Journal of Plant Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.17-21
    • /
    • 2002
  • To establish an the mass production system of grape anthocyanin pigments through callus and cell suspension culture, the effects of various combinations of auxins and cytokinins on friable callus production were studied. for friable callus production, 2,4-D was superior to other regulators. IAA at 2 mg/L induced callus from stem and petiole while NAA resulted in rooting. Callus induction rate increased with the 2,4-D level, and stem segments were superior to leaf blade or petiole, showing nearly 100% with 1 and 2 mg/L 2,4-D from petiole and stem. Combined treatments of 2,4-D + kinetin and NAA + BA also yielded friable callus from stem segments. In treatments with 1 mg/L 2,4-D + 1 mg/L kinetin and 1 mg/L NAA + 1 mg/L BA, callus induction rate was nearly 100%. The combination effect of 2,4-D and BA on anthocyanin production was not significant.

Effects of Ultraviolet-B Radiation on Growth and Photosynthesis in Cucumber Primary Leaves

  • Kim, Hyo-Jin;Kim, Tae-Yun;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1093-1101
    • /
    • 2006
  • In the present study we studied the growth, photosynthetic traits and protective mechanisms against oxidative stress in the primary loaves of cucumber (Cucumis sativus L.) seedlings with or without UV-B treatment. Cucumber seedings were irradiated with UV-B for 10 days in environment-controlled growth chambers. The primary leaves irradiated with UV-B showed reduction in leaf length and decreased biomass production. The reduced biomass production seemed to be due to a negative effect of UV-B radiation on the photosynthetic process. Changes in chemical properties of leaf, such as chi a/b ratio affected photosynthesis. UV-B significantly affected chl b content compared with chi a in the light harvesting complex resulting reduced photosynthetic activity Fv/Fm decreased with an UV-B stress, suggesting that the photosynthetic apparatus, and particularly, PS II was damaged under UV-B stress. Malondialdehyde(MDA) concentration which represents the state of membrane lipid peroxidation Increased significantly under UV-B stress confirming an oxidative stress. UV-B exposure with SA solution(0.1-1.0 mM) can partially ameliorated some of the detrimental effects of UV-B stress. Leaf injuries including loss of chlorophyll and decreased ratio of Fv/Fm were reduced with combined application of UV-B and SA. ABA and JA showed similar mode of action in physiological effects on photosynthetic activities though the levels were lower than those from SA treated plants. Chloroplast ultrastructure was also affected by UV-B exposure. The thickness of leaf tissue components decreased and the number of grana and thylakoids was reduced in chloroplast applied UV-B or SA alone. At combined stress granal and stromal thylakoids were less affected. The leaves under combined stress acquired a significant tolerance to oxidative stress. From these results, it can be suggested that SA may have involved a protective role against UV-B induced oxidative damage.

Determination of Regression Model for Estimating Root Fresh Weight Using Maximum Leaf Length and Width of Root Vegetables Grown in Reclaimed Land (간척지 재배 근채류의 최대 엽장과 엽폭을 이용한 지하부 생체중 추정용 회귀 모델 결정)

  • Jung, Dae Ho;Yi, Pyoung Ho;Lee, In-Bog
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.204-213
    • /
    • 2020
  • BACKGROUND: Since the number of crops cultivated in reclaimed land is huge, it is very difficult to quantify the total crop production. Therefore, a non-destructive method for predicting crop production is needed. Salt tolerant root vegetables such as red beets and sugar beet are suitable for cultivation in reclaimed land. If their underground biomass can be predicted, it helps to estimate crop productivity. Objectives of this study are to investigate maximum leaf length and weight of red beet, sugar beet, and turnips grown in reclaimed land, and to determine optimal model with regression analysis for linear and allometric growth models. METHODS AND RESULTS: Maximum leaf length, width, and root fresh weight of red beets, sugar beets, and turnips were measured. Ten linear models and six allometric growth models were selected for estimation of root fresh weight and non-linear regression analysis was conducted. The allometric growth model, which have a variable multiplied by square of maximum leaf length and maximum leaf width, showed highest R2 values of 0.67, 0.70, and 0.49 for red beets, sugar beets, and turnips, respectively. Validation results of the models for red beets and sugar beets showed the R2 values of 0.63 and 0.65, respectively. However, the model for turnips showed the R2 value of 0.48. The allometric growth model was suitable for estimating the root fresh weight of red beets and sugar beets, but the accuracy for turnips was relatively low. CONCLUSION: The regression models established in this study may be useful to estimate the total production of root vegetables cultivated in reclaimed land, and it will be used as a non-destructive method for prediction of crop information.

Vegetative Growth Characteristics of Phalaenopsis and Doritaenopsis Plants under Different Artificial Lighting Sources

  • Lee, Hyo Beom;An, Seong Kwang;Lee, Seung Youn;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • This study was conducted to determine the effects of artificial lighting sources on vegetative growth of Phalaenopsis and Doritaenopsis (an intergeneric hybrid of Doritis and Phalaenopsis) orchids. One - month - old plants were cultivated under fluorescent lamps, cool - white light - emitting diodes (LEDs), or warm - white LEDs at 80 and $160{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The blue (400 - 500 nm) : green (500 - 600 nm) : red (600 - 700 nm) : far - red (700 - 800 nm) ratios of the fluorescent lamps, cool-white LEDs, and warm-white LEDs were 1 : 1.3 : 0.8 : 0.1, 1 : 1.3 : 0.6 : 0.1, and 1 : 2.7 : 2.3 : 0.4, respectively. Each light treatment was maintained for 16 weeks in a closed plant-production system maintained at $28^{\circ}C$ with a 12 h photoperiod. The longest leaf span, as well as the leaf length and width of the uppermost mature leaf, were observed in plants treated with warm-white LEDs. Plants grown under fluorescent lamps had longer and wider leaves with a greater leaf span than plants grown under cool-white LEDs, while the maximum quantum efficiency of photosystem II was higher under cool-white LEDs. The vegetative responses affected by different lighting sources were similar at both 80 and $160{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Leaf span and root biomass were increased by the higher light intensity in both cultivars, while the relative chlorophyll content was decreased. These results indicate that relatively high intensity light can promote vegetative growth of young Phalaenopsis plants, and that warm - white LEDs, which contain a high red-light ratio, are a better lighting source for the growth of these plants than the cool-white LEDs or fluorescent lamps. These results could therefore be useful in the selection of artificial lighting to maximize vegetative growth of Phalaenopsis plants in a closed plant - production system.

The Tendency of Scientific Research of Tree Improvement and Forest Management in Japan (일본(日本)의 임목육종(林木育種) 및 삼림경영연구동향(森林經營硏究動向))

  • Kim, Young Ho;Son, Doo Sik
    • Current Research on Agriculture and Life Sciences
    • /
    • v.2
    • /
    • pp.42-55
    • /
    • 1984
  • The direction of scientific researches on tree improvement and forest management in several universities and research institutes in Japan can be summarized as follows: They put a great emphasis on sugi, Cryptomeria japonica and cypress, Chamaecyparus oblusa which are two major conifer species largerly planted in the Japanese forestry. In the research of sugi, a great concern has been made in evaluating inheritance of forest tree, quantitative characters and genetic parameter of growth, and in breeding for resistance to diseases and insects and to all the natural calamities. Interaction between environmental conditions and genetic nature of tree can be concerned factors in relation with forest damage, together with silvicultural conditions and pest infestation. Selfing hybrids of $F_1$ made from crossing twisted-leaf sugi, defomity leaf type and midori sugi, normal leaf type segregated the normal needle, twisted needle, green leaf and albino leaf type. It seemed that separation of many defomity individuals can be governed by two dominant complementary genes and from the near loci of which it was detected lethal genes. 52% of Japanese forestry is occupied by the small forest landowners like Korean forestry. This made difficulty for forest improvement such as progressive afforestation and for capital accumulation form forestry. The Forest Corporation was established at first in 1959 to aming at productive forestry structure and forest management, and afforestation. For these purpose, 35 Forest Corporations are at moment operating throughout Japan. However, investment in forestry business becomes less attractive since the wage in forest production duction increased in higher trend. than timber price. Therefore, an artifical afforestation becomes yearly decreased. At present. the self-sufficient rate of timber production in Japan is about 35%, and so a great effort is being made to increase self-sufficient rate of timber production.

  • PDF