• 제목/요약/키워드: Leaf Cell

검색결과 753건 처리시간 0.029초

Antimutagenic and Anticancer Effects of Leaf Mustard and Leaf Mustard Kimchi

  • Kim, Yong-Taek;Kim, Boh-Kyung;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • 제12권2호
    • /
    • pp.84-88
    • /
    • 2007
  • In this study, we investigated antimutagenic and anticancer activities of leaf mustard (LM, Brassica juncea) and leaf mustard kimchi (LMK) during their fermentation period. Methanol extracts were prepared from raw mustard, brined leaf mustard in 10% Gueun salt solution for 2 hrs, leaf mustard fermented at 15$^{\circ}C$ for 5 days after brined in 10% Guenun salt solution for 2 hrs (Fr-LM), fresh leaf mustard kimchi (Fresh-LMK) and optimally ripened leaf mustard kimchi fermented at 5$^{\circ}C$ for 30 days (OR-LMK). OR-LMK showed the strongest inhibitory activities against the mutagenicities induced by aflatoxin B1 in Salmonella Typhimurium TA100. LMs and LMKs inhibited the survival or growth of AGS human gastric adenocarcinoma cells and HT-29 human colon carcinoma cells in MTT assay and growth inhibition test. Among the extracts, OR-LMK and FR-LM exhibited strong antiproliferative effect against cancer cells, especially HT-29 cells. DAPI staining assay showed that OR-LMK induced apoptosis cell death of HT-29 cells in a dose-dependent manner. These results suggest that leaf mustards and leaf mustard kimchi have chemopreventive activities.

Molecular Biodesign of Plant Leaves and Flowers

  • Kim Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • 제5권3호
    • /
    • pp.137-142
    • /
    • 2003
  • The morphology of the leaves and the flowers of angiosperms exhibit remarkable diversity. One of the factors showing the greatest variability of leaf organs is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. In addition, the growth of leaf organs is dependent on the extent of the expansion of leaf cells and on cell proliferation in the cellular level. The rates of the division and enlargement of leaf cells at each stage contribute to the final shape of the leaf, and play important roles throughout leaf development. Thus, the control of leaf shape is related to the control of the shape of cells and the size of cells within the leaf. The shape of flower also reflects the shape of leaf, since floral organs are thought to be a derivative of leaf organs. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana. For example, the ANGUSTIFOLIA (AN) gene, a homolog of animal CtBP genes, controls leaf width. AN appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 (ROT3) gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. Taken together, we can discuss on the possibility of the control of the shapes and size of plant organs by transgenic approaches with the results from basic researches. For example, transgenic plants that overexpressed a wildtype ROT3 gene had longer leaves than parent plants, without any changes in leaf width. Thus, The genes for leaf growth and development, such as ROT3 gene, should be useful tools for the biodesign of plant organs.

Molecular Biodesign of Plant Leaves and Flowers

  • Kim, Gyung-Tae
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2003년도 식물바이오벤처 페스티발
    • /
    • pp.49-55
    • /
    • 2003
  • The morphology of the leaves and the flowers of angiosperms exhibit remarkable diversity. One of the factors showing the greatest variability of leaf organs is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. In addition, the growth of leaf organs is dependent on the extent of the expansion of leaf cells and on cell proliferation in the cellular level. The rates of the division and enlargement of leaf cells at each stage contribute to the final shape of the leaf, and play important roles throughout leaf development. Thus, the control of leaf shape is related to the control of the shape of cells and the size of cells within the leaf. The shape of flower also reflects the shape of leaf, since floral organs are thought to be a derivative of leaf organs. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana. For example, the ANGUSTIFOLIA (AN) gene, a homolog of animal CtBP genes, controls leaf width. AN appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 (ROT3) gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. Taken together, we can discuss on the possibility of the control of the shapes and size of plant organs by transgenic approaches with the results from basic researches. For example, transgenic plants that overexpressed a wild-type ROT3 gene had longer leaves than parent plants, without any changes in leaf width. Thus, The genes for leaf growth and development, such as ROT3 gene, should be useful tools for the biodesign of plant organs.

  • PDF

Effect of Nitrogen on Cell Dynamics at Leaf Growth Zone in Two Rice Varieties

  • Sung, Jwa-Kyung;Lee, Chul-Won;Kim, Tae-Wan;Hwang, Seon-Woong;Song, Beom-Heon
    • 한국작물학회지
    • /
    • 제49권2호
    • /
    • pp.121-125
    • /
    • 2004
  • In plants, nitrogen is the major component for growth and development. Leaf growth is based on the division, elongation and maturation of cells, which are used for making of epidermis, mesophyll, bundle sheath, xylem, phloem and so on. Dynamics of these tissues with respect to nitrogen are required for better understanding. This experiment was conducted to evaluate effect of nitrogen on the elongation of epidermal and guard cell of two rice (Oryza sativa L.) varieties, Seoanbyeo and Dasanbyeo on May 2000 at Chungbuk national university in Cheongju. After transplaning the 20-day-old seedlings into a/5000 pots, the main characteristics related with cell elongation were investigated and evaluated. A maximum. leaf length reached at 7 or 8 days after emerging from the collar, and also the leaf elongation rates were greatly affected by the increase of N application rate. The initial and final cell length were about $17\mu\textrm{m}$ and $130\mu\textrm{m}$, respectively. Cell divisions occurred within 1.0mm from leaf base. With die higher nitrogen application rate of 22 kg-N $10\textrm{a}^{-1}$, cell division per hour was greater 1.5 to 1.9 and 1.2 to 1.3 fold as compared to the N application rate of 0 and 11 kg-N $10\textrm{a}^{-1}$, respectively. Cell enlargement of epidermal and guard cell under higher N application rate (22kg-N $10\textrm{a}^{-1}$) was finished within about 20 (Seoanbyeo) and 15 hours (Dasanbyeo), while it took much time, about 30 hours.

한국산 사초과 식물 잎의 표피형에 대하여(6) (A Study of Epidermal Patterns of the Leaf Blades on Korean Sedges, Eriophorum, Fuirena, Kobresia, Rhynchospora and Scirpus(6))

  • 오용자
    • Journal of Plant Biology
    • /
    • 제17권2호
    • /
    • pp.99-105
    • /
    • 1974
  • Author has studied and reported on taxonomy of Korean sedges, using gross morphology, anatomy and epidermal patterns of the leaf blades(1969, 1971, 1973, 1974). This paper is the 6th report of epidermal patterns of leaf blade on sedges and includes 5 genera, Eriophorum, Fuirena, Kobresia, Rhynchospora and Scirpus. The author proposed to find epidermal patterns of leaf blades as an important taxonomic characteristic of sedges classification. The result of this study, the elements of leaf epidermis, subsidal cells, silica body, cell wall of long cell, prickles, and arrangement of the elements are considered to be significant characteristics for the identification and classification of sedge.

  • PDF

Evo-Devo of Leaf Shape Control with a Special Emphasis on Unifacial Leaves in Monocots

  • Yamaguchi, Takahiro;Tsukaya, Hirokazu
    • 식물분류학회지
    • /
    • 제37권4호
    • /
    • pp.351-361
    • /
    • 2007
  • In angiosperms, leaves typically develop as three-dimensional structure with dorsoventral, longitudinal, and lateral axes. We have shown that the control of two axes of leaves, longitudinal and lateral axis, can be genetically separable, and four classes of genes are responsible for the polar cell expansion and polar cell proliferation in Arabidopsis. In monocots, unifacial leaf, in which leaf surface consists only of abaxial identity, has been evolved in a number of divergent species. The unifacial leaves provide very unique opportunities for the developmental studies of the leaf axes formation in monocots, because their leaf polarities are highly disorganized. In addition, the mechanism of the parallel evolution of such drastic changes in leaf polarities is of interest from an evolutionary viewpoint. In this article, we describe our recent approaches to reveal the mechanism of unifacial leaf development and evolution, including recent advances in the leaf polarity specification in angiosperms.

바나나잎 추출물의 미백 개선 효과 (Whitening Effect of Banana Leaf Extract)

  • 황형서;유대성;심중현
    • 대한화장품학회지
    • /
    • 제42권1호
    • /
    • pp.37-43
    • /
    • 2016
  • 바나나잎의 기능성화장품 소재로써 응용 가능성을 규명하고자 바나나잎 추출물이 피부 미백에 미치는 효과를 B16F10 세포주를 활용하여 cell viability, mRNA 발현 및 tyrosinase (Tyr) 활성 저해 실험을 통하여 알아보았다. 10%의 바나나잎 추출물은 tyrosinase 활성을 저해하고, 멜라닌 합성을 65% 감소시키는 것을 확인하였다. 정량적 real-time RT-PCR을 수행한 결과 바나나잎 추출물이 tyrosinase related protein 1 (TRP1) / tyrosinase related protein 2 (TRP2) / tyrosinase mRNA 발현을 각각 20 / 40 / 60% 가량 억제하는 효과를 확인하였다. 또한 바나나잎 추출물이 함유된 크림제형의 임상시험을 수행하여 자외선 조사 직후 바나나잎 추출물이 함유된 크림의 육안평가 결과 유의한 미백효과가 있는 것을 확인하였다. 본 연구 결과는 바나나잎 추출물이 미백 기능성 화장품 소재 뿐 아니라 향후 기전 연구 수행을 통해 다양한 산업화 소재로 개발될 수 있음을 시사한다.

Histological and Ultrastructural Study of Susceptible and Age-related Resistance Responses of Pepper Leaves to Colletotrichum cocodes Infection

  • Hong, Jeum-Kyu;Lee, Yeon-Kyeong;Jeun, Yong-Chull;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • 제17권3호
    • /
    • pp.128-140
    • /
    • 2001
  • Infection of pepper leaves by Colletotrichum cocodes at the two- and eight-leaf stages caused susceptible and resistant lesions 96 h after inoculation, respectively. At the two-leaf stage, progressive symptom development occurred on the infected leaves. In contrast, localized necrotic spots were characteristic symptoms at the eight-leaf stage. Infected leaves at the two-leaf stage exhibited cell death accompanied by the accumulation of autofluorescent compounds. At the eight-leaf stage, pepper leaves infected by the anthracnose fungus displayed localized autofluorescence from the symptoms. Infection of pepper leaves by C. cocodes at the two-leaf stage resulted in its rapidand massive colonization of all the leaf tissues including the vascular tissue, together with cytoplasmic collapse, distortion of chloroplasts, and disruption of host cell walls. However, penetration of C. cocodes was very limited in the older leaf tissues of pepper plants at the eight-leaf stage. Fungal hyphae grew only in the intramural spaces of the epidermal cell walls at this stage. Occlusion of amorphous material in xylem vessels, aggregation of fibrillar material in inter-cellular spaces, and deposition of protein bodies were found as resistance responses to C. cocodes.

  • PDF

닭의장풀과 자주달개비에서 적색광과 이산화탄소에 의해 유도된 공변세포의 전위차 변화에 미치는 엽육세포의 영향 (Influence of the Mesophyll on the Change of electrical Potential Difference of Guard Cells Induced by Red-light and CO2 in Commelina communis L. and Tradescantia virginiana L.)

  • 이준상
    • Journal of Plant Biology
    • /
    • 제36권4호
    • /
    • pp.383-389
    • /
    • 1993
  • Intact leaf과 detached epidermis에 있는 공변세포의 전기 생리학적 특성에 대한 빛과 이산화탄소의 효과를 조사하였다. 빛을 intact leaf의 abaxial side에 처리하면 공변세포막이 과분극 (hyperpolarization)되었다. 닭의장풀의 intact leaf에 있는 공변세포들은 빛에 의해 최대 13 mV 그리고 이산화탄소에 의해 42 mV까지 membrane potential difference(MPD)가 negative하게 변했다. 자주달개비에서도 비슷한 결과를 얻었다. 그러나, 빛과 이산화탄소를 detached epidermis에 있는 공변세포에 처리할 경우에는 공변세포의 MPD가 변하지 않았다. 위의 결과로부터, 엽육세포가 공변세포의 MPD 변화에 영향을 주는 것으로 사료되어, 엽육세포들을 광합성 억제제들을 침윤시켜 엽육세포 광합성의 어느 기작이 공변세포 MPD 변화에 영향을 주는지 조사하였다. CCCP로 침윤한 잎의 공변세포막은 적색광에 의해 약간 탈분극(depolarization)되었고, 이산화탄소에 의해 과분극되었다. 반면에, DCCD와 DCMU로 침윤한 경우에는 대조구 잎과 마찬자기로 적색광과 이산화탄소에 의해 과분극되었다. Azide로 침윤한 잎에 적색광을 처리하면 공변세포의MPD는 변하지 않았고, 이산화탄소를 처리하면 다른 처리구들에 비해 훨씬 감소한 막의 과분극을 보였다. 이는 azide가 잎에 손상을 유도하며 세포내 대사활성을 감소시킨 결과 이산화탄소에 의한 MPD 변화가 작았고, 적색광은 아무 효과도 보이지 않은 것으로 사료된다. 따라서, 엽육세포가 적색광을 감지하며 빛에 의해 유도된 공변세포막 과분극은 순환적 광인산화 반응에 의해 생성된 에너지에 의존하나 이산화타소에 의해 유도된 공변세포막 과분극은 광합성가 무관하다고 볼 수 있다. 또한 이산화탄소를 intact leaf에 처리하면 공변세포 액포가 알칼리화되는 것을 관찰하였는데, 이는 막의 과분극이 양성자 이온의 방출에 의해 일어난다는 것을 의미한다.

  • PDF

MORPHOLOGICAL STUDY BY SCANNING ELECTRON MICROSCOPY OF RUMEN DEGRADATION OF WHEAT STRAW TREATED WITH AMMONIA AND SULPHUR DIOXIDE

  • Song, Y.H.;Shimojo, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제6권2호
    • /
    • pp.265-270
    • /
    • 1993
  • Ammonia and/or sulphur dioxide treated and untreated wheat leaf sheaths were compared for cell wall digestion by incubation with rumen liquor for 24 and 48 hours. Scanning electron microscope (SEM) was used to study the relative rate and extent of cell wall digestion. Treated wheat straw leaf sheaths were distorted, with more distortion observed in ammonia and sulphur dioxide combined treatment than any other treatment. Rumen liquor digestion for 24 hours of untreated leaf sheath showed disrupted phloem, partially ruptured parenchyma and vascular tissues and further partially distorted inner bundle sheaths and vascular bundle after 48 hours incubation. Sulphurated leaf sheaths showed extensive degraded parenchyma and sclerenchyma material in 24 hours incubation, however, all tissues were irregulary shaped in 48 hours incubation. In ammoniation, epidermal cell walls and small vascular bundles began to disintegrate by 24 hours incubation, extensively changed structure and degraded epidermal tissue by 48 hours incubation. Combination treatment of leaf sheaths degraded all cell walls of parenchyma, phloem and vascular bundle by 24 hours incubation, however, structures only of inner bundles sheath with extended land, sclerenchyma and cutinized epidermal cell walls remained.