• Title/Summary/Keyword: Leading Edge Wave

Search Result 27, Processing Time 0.017 seconds

A Numerical Study on Strut-Placed Supersonic Flow in Annulus Flowfield (스트럿트가 있는 초음속 환형유동장에 대한 수치적 연구)

  • Park Hee Jun;Joo Won Goo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.53-63
    • /
    • 2002
  • In this numerical approach, strut-placed supersonic annular flow is examined. The geometrical variations of strut cause strong influence on flowfield structures. The geometrical variations are as follows, swept effect, attack angle effect, variation of leading edge shape. These changed features such as velocity structure, pressure structure, shock-boundary layer interaction are compared and analyzed according to each geometrical configuration.

  • PDF

NUMERICAL ANALYSIS FOR TURBULENT FLOW OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATION (세장비 변화에 따른 3차원 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.13-18
    • /
    • 2009
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought about by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 2.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}106$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental data in the low aspect ratio cavity (L/D = ~ 4.5). In the large aspect ratio cavity, however, there are other low dominant frequencies due to the leading edge shear layer with the dominant frequencies of the feedback mechanism. The characteristics of the acoustic wave propagation are analyzed using the Correlation of Pressure Distribution (CPD).

  • PDF

Experimental/ Computational Study on the Passive Control of Supersonic Cavity Flow using a Sub-Cavity (Sub-cavity를 이용한 초음속 cavity 유동의 피동제어에 대한 실험 및 수치해석적 연구)

  • Lim, Chae-Min;Lee, Young-Ki;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.295-298
    • /
    • 2007
  • The effectiveness of passive control techniques for reducing the pressure oscillation generated in a supersonic cavity flow was investigated numerically and experimentally, respectively. The control device includes a sub-cavity installed in the upstream edge of a rectangular cavity. Time-dependent supersonic cavity flow characteristics with turbulent features were examined by using the three-dimensional, mass-averaged Navier-Stokes computation based on a finite volume scheme and large eddy simulation. The results show that the pressure oscillation near the trailing edge dominates overall time-dependent cavity pressure variations. Such an oscillation can be attenuated more significantly in the presence of the sub-cavity compared with the cavity without sub-cavity, and a larger sub-cavity leads to better control performance.

  • PDF

CFD-EFD Mutual Validation Using a CFD Solver Based on Unstructured Meshes Developed at KAIST (KAIST 비정렬격자 기반 CFD 해석자를 이용한 CFD-EFD 상호 비교 검증)

  • Jung, Seongmun;Han, Jaeseong;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.259-267
    • /
    • 2017
  • Flow fields around a KARI-11-180 airfoil, SDM and transonic body are numerically simulated by using an unstructured meshes based compressible flow solver developed at KAIST. RANS equations are solved to analyse the flow fields and Roe's FDS method is adopted to evaluate convective fluxes. Turbulence effect of the flow fields is modeled by a SA model, SST model and ${\gamma}-{\widetilde{Re}}_{{\theta}t}$ model. It is found that smaller drag coefficients are predicted for the KARI-11-180 airfoil when a transition phenomenon is considered and small deviations exist between CFD and EFD results. For the SDM, flow separation is observed at a leading edge and calculated aerodynamic properties show similar tendencies to experimental results. A shock wave on main wings of the transonic body is successfully captured by the present flow solver at a Mach number 0.9. Estimated pressure profiles by means of the present CFD method also agree well with those of wind tunnel results.

Velocity profile measurement of supersonic boundary layer over a flat plate using the PIV technique (PIV 기법을 이용한 초음속 평판 경계층의 속도 분포 측정)

  • Lee, Hyuk;Kim, Young Ju;Byun, Yung Hwan;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.477-483
    • /
    • 2016
  • Velocity profiles of laminar, transition and turbulent boundary layers were investigated by using Particle Image Velocimetry(PIV) measurements on the flat plate at Mach 2.96. The Schlieren visualization and PIV measurements are also used to confirm whether the oblique shock wave generated from the leading edge affects the flow field over the flat plate. The laminar velocity profile measured from the experiment was well matched with the compressible Blasius solution. The velocity profile of the transition boundary layer was well correlated with the theoretical turbulent velocity profile from near the wall and the transition began from Re = $1.41{\times}106$. For the turbulent boundary layer, considering compressibility effects, the Van Driest-transformed velocity satisfies the incompressible log-law. It is found that the log region is extended farther in the wall-normal direction compared to the log region in incompressible boundary layer.

A Study On The Eigen-properties of A 2-D Square Waveguide by the Krylov-Schur Iteration Method (Krylov-Schur 순환법에 의한 2차원 사각도파관에서의 고유치 문제에 관한 연구)

  • Kim, Yeong Min;Kim, Dongchool;Lim, Jong Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.28-35
    • /
    • 2013
  • The Krylov-Schur algorithm has been applied to reveal the eigen-properties of the wave guide having the square cross section. The eigen-matrix equation has been constructed from FEM with the basis function of the tangential edge-vectors of the triangular element. This equation has been treated firstly with Arnoldi decomposition to obtain a upper Hessenberg matrix. The QR algorithm has been carried out to transform it into Schur form. The several eigen values satisfying the convergent condition have appeared in the diagonal components. The eigen-modes for them have been calculated from the inverse iteration method. The wanted eigen-pairs have been reordered in the leading principle sub-matrix of the Schur matrix. This sub-matrix has been deflated from the eigen-matrix equation for the subsequent search of other eigen-pairs. These processes have been conducted several times repeatedly. As a result, a few primary eigen-pairs of TE and TM modes have been obtained with sufficient reliability.

A Comparative Analysis on the Competitiveness of Korean and Japanese Fashion Industry by Applying Generalized Double Diamond Model

  • Son, Mi Young;Kenji, Yokoyama
    • Asia Marketing Journal
    • /
    • v.15 no.1
    • /
    • pp.57-81
    • /
    • 2013
  • The purpose of this paper is to seek ways to improve the competitiveness of Korea's fashion industry by utilizing the source of competitiveness of Japan's fashion industry, which represents the world's leading countries in terms of fashion, so that Korea can better enter the global fashion market. The study shall first compare the competitiveness of the Japanese and Korean fashion industries by utilizing the generalized double diamond model; second, provide an understanding of what the Japanese fashion industry can offer to Korean fashion industry and companies - that is, understand what the Japanese fashion industry's competitive edge is; and third, study the kind of global competitiveness that Korea's fashion industry must achieve. To adopt a generalized double diamond model to compare the competitiveness of the Korean and Japanese fashion industries, we selected 31 sub-variables to act as determinants of the model. That is, we extracted 31sub-variables by doing research of literature to analyze national competitiveness of the fashion industries. To measure these 31 sub-variables, secondary data was gathered. We collected data related to each sub-variable from various sources of Korea and Japan. And to calculate the competitiveness index, we took three steps with reference to previous studies. We found that status of the fashion industry of the two countries as it stands. That is, Japan is an advanced country of which fashion industry is domestic market-oriented while Korea is a small open economy that mainly focuses on the foreign market. Out of 31 proxy variables, Korea's fashion industry shows higher measurements relating to production and export than Japan, but Japan's fashion industry reports higher measurements than Korea in the fields of R&D, design and brand power, the rate of value added, the efficiency of companies and globalization. In order for Korea's fashion industry to achieve competitiveness in the global market, it should pursue the following development direction. First, it is very difficult for Korea to follow the footsteps of the U.S. and Japanese fashion industries that are able to take advantage of economies of scale, because Korea is smaller than those countries. Therefore, in the case of small economies such as Singapore, strengthening of international activities will practically improve domestic determinants that Korea should improve its domestic diamond by enhancing the current competitiveness of its international diamond. In other words, Korea needs to further endeavor to develop and expand global resources and markets as well as improve its competitiveness in terms of R&D, design and brand power, the rate of value-added, and the efficiency of companies. As the Korean fashion industry shows relatively advanced level of information technology and the fashion education system, it has considerable potential to grow. Korea is expected to have a huge growth potential since it has relatively higher level of information technology, fashion education system and activities than those of Japan in both the domestic diamond and international diamond. In particular, a better environment is laid out before Korea to gain competitiveness in the fashion industry due to the recently growing influence of the Korean Wave that Korea is expected to grow as a leader in the Asian market as well as in the global market.

  • PDF