• Title/Summary/Keyword: Leading Edge Wave

Search Result 27, Processing Time 0.02 seconds

앞전에서의 팽창파를 이용한 양항비의 개선에 대한 연구

  • Yun, Yeong-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.19-22
    • /
    • 2016
  • Leading edge thrust is generally caused by passing air flow from lower to upper surface and it is required to have sufficient angle of attack for notable leading edge thrust. To produce leading edge thrust at low angle of attack, utilizing expansion wave accompanying low pressure is able to be a solution. Fore structure changes the direction of flow, and this flow passes the projected edge. As a result, from a perspective of the edge, it is able to have high angle of attack, and artificial expansion wave is generated. This concept shows 9.48% increase of L/D in inviscid flow, at Mach number 1.3 and angle of attack $1^{\circ}$ in maximum, and this model shows the 3.98% of increasement at angle of attack $2^{\circ}$. Although advantage of the artificial expansion wave decreased as angle of attack increase, it shows the possibility of aerodynamical improvement with artificial expansion wave.

  • PDF

Numerical Study on The Effects of Blade Leading Edge Shape to the Performance of Supersonic Rotors (초음속 회전익의 앞전 형상이 공력 성능에 미치는 효과에 대한 수치적 연구)

  • Park, Kicheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.149-155
    • /
    • 2001
  • Recently, it is required to design higher stage pressure ratio compressor while maintaining equal adiabatic efficiency. To increase the stage pressure ratio, blade rotational speed or diffusion factor should be increased. In the case of increasing rotational speed, relative speed of flow at blade leading edge is well supersonic. In supersonic blade, total pressure loss is mainly due to shock wave and blade leading edge thickness should be very thin to minimize the shock wave loss. As a result, the blade is like to be week in terms of mechanical strength and the manufacturing cost is very high because NC machining is necessary. It is also one of big hurdle to overcome to make small compressor. In this paper, the effects of blade leading edge to the performance of supersonic blade In terms of total pressure loss. The efficiency of already known method to make thin blade leading edge from the casted blade with rather thick leading edge thickness is also assessed.

  • PDF

The Role of the Pattern Edge in Goldfish Visual Motion Detection

  • Kim, Sun-Hee;Jung, Chang-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.413-417
    • /
    • 2010
  • To understand the function of edges in perception of moving objects, we defined four questions to answer. Is the focus point in visual motion detection of a moving object: (1) the body or the edge of the object, (2) the leading edge or trailing edge of the object, (3) different in scotopic, mesopic and photopic luminance levels, or (4) different for colored objects? We measured the Optomotor Response (OMR) and Edge Triggering Response (ETR) of goldfish. We used a square and sine wave patterns with black and red stripes and a square wave pattern with black and grey stripes to generate OMR's and ETR's in the goldfish. When we used black and red stripes, the black leading edges stimulated an ETR under scotopic conditions, red leading edges stimulated an ETR under photopic conditions, and both black and red leading edges stimulated an ETR under mesopic luminance levels. For black and gray stripes, only black leading edges stimulated an ETR in all three light illumination levels. We observed less OMR and ETR results using the sine wave pattern compared to using the square wave pattern. From these results, we deduced that the goldfish tend to prefer tracking the leading edge of the pattern. The goldfish can also detect the color of the moving pattern under photopic luminance conditions. We decided that ETR is an intriguing factor in OMR, and is suitable as a method of behavioral measurement in visual system research.

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

Analysis of Ultrasonic Scattering Fields by 2-D Boundary Element Method and Its Application (2차원 경계요소법에 의한 초음파 산란음장의 해석과 응용)

  • Jeong, Hyunjo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1439-1444
    • /
    • 2005
  • A two-dimensional boundary element method was used for the scattering analysis of side-drilled hole(SDH). The far-field scattering amplitude was calculated for shear vertical(SV) wave, and their frequency and time-domain results were presented. The time-domain scattering amplitude showed the directly reflected wave from the SDH leading edge as well as the creeping wave. In an immersion, pulse-echo testing, two measurement models were introduced to predict the response from SDHs. The 2-D boundary element scattering amplitude was converted to the 3-D amplitude to be used in the measurement model. The receiver voltage was calculated fer SV wave incidence at 45$^{\circ}C$ on the 1 m diameter SDH, and the result was compared with experiment.

Shear Layer and Wave Structure Over Partially Spanning Cavities

  • Das, Rajarshi;Kim, Heuy Dong;Kurian, Job
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.46-54
    • /
    • 2013
  • Study of the wave structure and shear layer in the vicinity of a wall mounted cavity is done by time averaged colour schlieren and time resolved instantaneous shadowgraph technique in an M=1.7 flowfield. Effect of change of cavity width on flow structure is investigated by using constant length to depth (L/D) ratio cavity models with varying length to width (L/W) ratio of 0.83 to 4. The time averaged shock wave structure was observed to change with change in cavity width. Dependence of the shock angle at the leading edge on the shear layer width is also evident from the images obtained. Unsteadiness in the flow field in terms of shear layer dynamics and quasi steady nature of shock waves was evident from the images obtained during instantaneous shadowgraph experiments. Apart from the leading and trailing edge shocks, several other waves and flow features were observed. These flow features and the associated physical phenomena are discussed in details and presented in the paper.

Hydrodynamic characteristics for flow around wavy wings with different wave lengths

  • Kim, Mi Jeong;Yoon, Hyun Sik;Jung, Jae Hwan;Chun, Ho Hwan;Park, Dong Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.447-459
    • /
    • 2012
  • The present study numerically investigates the effect of the wavy leading edge on hydrodynamic characteristics for the flow of rectangular wings with the low aspect ratio of 1.5. Five different wave lengths at fixed wavy amplitude have been considered. Numerical simulations are performed at a wide range of the angle of attack ($0^{\circ}{\leq}{\alpha}{\leq}40^{\circ}$) at one Reynolds number of $10^6$. The wavy wings considered in this study did not experience enough lift drop to be defined as the stall, comparing with the smooth wing. However, in the pre-stall region, the wavy wings reveal the considerable loss of the lift, compared to the smooth wing. In the post-stall, the lift coefficients of the smooth wing and the wavy wings are not much different. The pressure coefficient, limiting streamlines and the iso-surface of the spanwise vorticity are also highlighted to examine the effect of the wave length on the flow structures.

Aerodynamic control capability of a wing-flap in hypersonic, rarefied regime

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2015
  • The attitude aerodynamic control is an important subject in the design of an aerospace plane. Usually, at high altitudes, this control is fulfilled by thrusters so that the implementation of an aerodynamic control of the vehicle has the advantage of reducing the amount of thrusters fuel to be loaded on board. In the present paper, the efficiency of a wing-flap has been evaluated considering a NACA 0010 airfoil with a trailing edge flap of length equal to 35% of the chord. Computational tests have been carried out in hypersonic, rarefied flow by a direct simulation Monte Carlo code at the altitudes of 65 and 85 km, in the range of angle of attack 0-40 deg. and with flap deflection equal to 0, 15 and 30 deg.. Effects of the flap deflection have been quantified by the variations of the aerodynamic force and of the longitudinal moment. The shock wave-boundary layer interaction and the shock wave-shock wave interaction have been also considered. A possible interaction of the leading edge shock wave and of the shock wave arising from the vertex of the convex corner, produced on the lower surface of the airfoil when the flap is deflected, generates a shock wave whose intensity is stronger than those of the two interacting shock waves. This produces a consistent increment of pressure and heat flux on the lower surface of the flap, where a thermal protection system is required.

Aerodynamics of a wing section along an entry path in Mars atmosphere

  • Zuppardi, Gennaro;Mongelluzzo, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.53-67
    • /
    • 2021
  • The increasing interest in the exploration of Mars stimulated the authors to study aerodynamic problems linked to space vehicles. The aim of this paper is to evaluate the aerodynamic effects of a flapped wing in collaborating with parachutes and retro-rockets to reduce velocity and with thrusters to control the spacecraft attitude. 3-D computations on a preliminary configuration of a blunt-cylinder, provided with flapped fins, quantified the beneficial influence of the fins. The present paper is focused on Aerodynamics of a wing section (NACA-0010) provided with a trailing edge flap. The influence of the flap deflection was evaluated by the increments of aerodynamic force and leading edge pitching moment coefficients with respect to the coefficients in clean configuration. The study was carried out by means of two Direct Simulation Monte Carlo (DSMC) codes (DS2V/3V solving 2-D/3-D flow fields, respectively). A DSMC code is indispensable to simulate complex flow fields on a wing generated by Shock Wave-Shock Wave Interaction (SWSWI) due to the flap deflection. The flap angle has to be a compromise between the aerodynamic effectiveness and the increases of aerodynamic load and heat flux on the wing section lower surface.

Application of the Scaling Law for Swept Shock/Boundary-Layer Interactions

  • Lee, Yeol
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2116-2124
    • /
    • 2003
  • An experimental study providing additional knowledge of quasi-conical symmetry in swept shock wave/turbulent boundary-layer interactions is described. When a turbulent boundary layer on the flat plate is subjected to interact with a swept planar shock wave, the interaction flowfield far from fin leading edge has a nature of conical symmetry, which topological features of the interaction flow appear to emanate from a virtual conical origin. Surface streakline patterns obtained from the kerosene-lampblack tracings have been utilized to obtain representative surface features of the flow, including the location of the virtual conical origin. The scaling law for the sharp-fin interactions suggested by previous investigators has been reexamined for different freestream Mach numbers. It is noticed that the scaling law reasonably agrees with the present experimental data, however, that the law is not appropriate to estimate the location of the virtual conical origin. Further knowledge of the correlation for the virtual conical origin has thus been proposed.