• Title/Summary/Keyword: Lead rubber bearing

Search Result 132, Processing Time 0.024 seconds

The Seismic Behavior of the Truss-Arch Structure with Lead Rubber Bearing(LRB) (납-고무면진장치가 적용된 트러스-아치 구조물의 지진거동 분서)

  • Shin, Min -Gi;Kim, Gee-Cheol;Kang, Joo-Won
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.133-138
    • /
    • 2008
  • In this study, the seismic behavior of arch structure with lead rubber bearing(LRB) is analyzed. The arch structure is the simplest structure and has the basic dynamic characteristics among large spatial structures. Also, Large spatial structures have large vertical response by horizontal seismic vibration, unlike seismic behavior of normal rahmen structures. When horizontal seismic load is applied to the large spatial structure with isolation systems, the horizontal acceleration response of the large spatial structure is reduced and the vertical seismic response is remarkably reduced.

  • PDF

Seismic applicability of a long-span railway concrete upper-deck arch bridge with CFST rigid skeleton rib

  • Shao, Changjiang;Ju, Jiann-wen Woody;Han, Guoqing;Qian, Yongjiu
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.645-655
    • /
    • 2017
  • To determine the seismic applicability of a long-span railway concrete upper-deck arch bridge with concrete-filled steel-tube (CFST) rigid skeleton ribs, some fundamental principles and seismic approaches for long-span bridges are investigated to update the design methods in the current Code for Seismic Design of Railway Engineering of China. Ductile and mixed isolation design are investigated respectively to compare the structural seismic performances. The flexural moment and plastic rotation demands and capacities are quantified to assess the seismic status of the ductile components. A kind of triple friction pendulum (TFP) system and lead-plug rubber bearing are applied simultaneously to regularize the structural seismic demands. The numerical analysis shows that the current ductile layout with continuous rigid frame approaching spans should be strengthened to satisfy the demands of rare earthquakes. However, the mixed isolation design embodies excellent seismic performances for the continuous girder approaching span of this railway arch bridge.

Influence of the deteriorated anti-seismic devices on seismic performance and device behavior of continuous girder bridges

  • Shangtao Hu;Renkang Hu;Menggang Yang;Dongliang Meng
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.333-343
    • /
    • 2023
  • Various seismic isolation and reduction devices have been applied to suppress the longitudinal vibration of continuous girder bridges. As representative devices, lead rubber bearing (LRB) and fluid viscous damper (FVD) might suffer from deterioration during the long-term service. This study aims to evaluate the impact of device deterioration on the seismic responses of continuous girder bridges and investigate the seismic behavior of deteriorated LRBs and FVDs. Seismic performance of a simplified bridge model was investigated, and the influence of device deterioration was evaluated by the coefficient of variation method. The contribution of LRB and FVD was assessed by the Sobol global sensitivity analysis method. Finally, the seismic behaviors of deteriorated LRBs and FVDs were discussed. The result shows that (i) the girder-pier relative displacement is the most sensitive to the changes in the deterioration level, (ii) the deterioration of FVD has a greater effect on the structural responses than that of LRB, (iii) FVD plays a major role in energy dissipation with a low degradation level while LRB is more essential in dissipating energy when suffering from high degradation level, (iv) the deteriorated devices are more likely to reach the ultimate state and thus be damaged.

Experimental Study on the Temperature Dependency of Full Scale Low Hardness Lead Rubber Bearing (Full-scale 저경도 납면진받침의 온도의존성에 대한 실험적 연구)

  • Park, Jin Young;Jang, Kwang-Seok;Lee, Hong-Pyo;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.533-540
    • /
    • 2012
  • Rubber laminated bearings with lead core are highly affected by changes in temperature because key materials which are rubber and lead have temperature dependencies. In this study, two full scale LRB(D800, S=5) are manufactured and temperature dependency tests on shear properties are accomplished. The shear properties at the 3rd cycle are used at $-10^{\circ}C$, $0^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$ respectively. The double shear configuration, simultaneously testing two pieces, is applied for compression shear test in order to minimize the friction effects due to the test machine, described in ISO 22762-1:2010. Characteristic strength, post-yield stiffness, effective stiffness, equivalent damping ratio are estimated and presented coefficient due to the temperature changes.

A Study on Base Isolation Performance of Magneto-Sensitive Rubbers (자기민감 고무를 이용한 구조물의 면진성능 연구)

  • Hwang In-Ho;Lim Jong-Hyuk;Lee Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.437-444
    • /
    • 2006
  • Recently, as large structures become lighter and more flexible, the necessity of structural control for reducing excessive displacement and acceleration due to seismic excitation is increased. As a means to minimize seismic damages, various base isolation systems are adopted or considered for adoption. In this study, a base isolation system using Magneto-Sensitive(MS) rubbers is proposed and shown to effectively protect structures against earthquakes. The MS Rubber is a class of smart controllable materials whose mechanical properties change instantly by the application of a magnetic field To demonstrate the advantages of this approach, the MS Rubber isolation system is compared to Lead-Rubber Bearing(LRB) isolation systems and judged based on computed responses to several historical earthquakes. The MS Rubber isolation system is shown to achieve notable decreases in base drifts over comparable passive systems with no accompanying increase in base shears or in accelerations imparted to the superstructure.

  • PDF

Seismic Responses of Highway Multiple Span Steel Bridges Retrofitted by Protective Devices (저감장치에 의해 개선된 고속도로 다경간 강교량의 지진응답)

  • Choi, Eun-Soo;Kim, Joo-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.49-59
    • /
    • 2004
  • A previous study evaluated the seismic response of typical multi-span simply supported (MSSS) and multi-span continuous (MSC) steel-girder bridges in the central and southeastern United States. The results showed that the bridges were vulnerable to damage resulting from impact between decks, and large ductility demands on nonductile columns. Furthermore, fixed and expansion bearings were likely to fail during strong ground motion. In this paper, several retrofit measures to improve the seismic performance of typical multi-span simply supported and multi-span continuous steel girder bridges are evaluated, including the use of elastomeric bearings, lead-rubber bearings, and restrainer cables. It is determined that iead-rubber bearings are the most effective retrofit measure for reducing the seismic vulnerability of typical bridges. While isolation provided by elastomeric bearings limits the forces into the columns, the added flexibility results in pounding between decks in the MSSS steel-girder bridge. Restrainer cables, which are becoming a common retrofit measure, are only moderately effective in reducing the seismic vulnerability of MSSS and MSC steel girder bridges.

  • PDF

Effects of the isolation parameters on the seismic response of steel frames

  • Deringol, Ahmet H.;Bilgin, Huseyin
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.319-334
    • /
    • 2018
  • In this paper, an analytical study was carried out to propose an optimum base-isolated system for the design of steel structures equipped with lead rubber bearings (LRB). For this, 5 and 10-storey steel moment resisting frames (MRFs) were designed as Special Moment Frame (SMF). These two-dimensional and three-bay frames equipped with a set of isolation systems within a predefined range that minimizes the response of the base-isolated frames subjected to a series of earthquakes. In the design of LRB, two main parameters, namely, isolation period (T) and the ratio of strength to weight (Q/W) supported by isolators were considered as 2.25, 2.5, 2.75 and 3 s, 0.05, 0.10 and 0.15, respectively. The Force-deformation behavior of the isolators was modelled by the bi-linear behavior which could reflect the nonlinear characteristics of the lead-plug bearings. The base-isolated frames were modelled using a finite element program and those performances were evaluated in the light of the nonlinear time history analyses by six natural accelerograms compatible with seismic hazard levels of 2% probability of exceedance in 50 years. The performance of the isolated frames was assessed in terms of roof displacement, relative displacement, interstorey drift, absolute acceleration, base shear and hysteretic curve.

Effectiveness of seismic isolation in a reinforced concrete structure with soft story

  • Hakan Ozturk;Esengul Cavdar;Gokhan Ozdemir
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.405-418
    • /
    • 2023
  • This study focused on the effectiveness of seismic isolation technique in case of a reinforced concrete structure with soft story defined as the stiffness irregularity between adjacent stories. In this context, a seismically isolated 3-story reinforced concrete structure was analyzed by gradually increasing the first story height (3.0, 4.5, and 6.0 m). The seismic isolation system of the structure is assumed to be composed of lead rubber bearings (LRB). In the analyses, isolators were modeled by both deteriorating (temperature-dependent analyses) and non-deteriorating (bounding analyses) hysteretic representations. The deterioration in strength of isolator is due to temperature rise in the lead core during cyclic motion. The ground motion pairs used in bi-directional nonlinear dynamic analyses were selected and scaled according to codified procedures. In the analyses, different isolation periods (Tiso) and characteristic strength to weight ratios (Q/W) were considered in order to determine the sensitivity of structural response to the isolator properties. Response quantities under consideration are floor accelerations, and interstory drift ratios. Analyses results are compared for both hysteretic representations of LRBs. Results are also used to assess the significance of the ratio between the horizontal stiffnesses of soft story and isolation system. It is revealed that seismic isolation is a viable method to reduce structural damage in structures with soft story.

Collapse failure mechanism of subway station under mainshock-aftershocks in the soft area

  • Zhen-Dong Cui;Wen-Xiang Yan;Su-Yang Wang
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.303-316
    • /
    • 2024
  • Seismic records are composed of mainshock and a series of aftershocks which often result in the incremental damage to underground structures and bring great challenges to the rescue of post-disaster and the repair of post-earthquake. In this paper, the repetition method was used to construct the mainshock-aftershocks sequence which was used as the input ground motion for the analysis of dynamic time history. Based on the Daikai station, the two-dimensional finite element model of soil-station was established to explore the failure process of station under different seismic precautionary intensities, and the concept of incremental damage of station was introduced to quantitatively analyze the damage condition of structure under the action of mainshock and two aftershocks. An arc rubber bearing was proposed for the shock absorption. With the arc rubber bearing, the mode of the traditional column end connection was changed from "fixed connection" to "hinged joint", and the ductility of the structure was significantly improved. The results show that the damage condition of the subway station is closely related to the magnitude of the mainshock. When the magnitude of the mainshock is low, the incremental damage to the structure caused by the subsequent aftershocks is little. When the magnitude of the mainshock is high, the subsequent aftershocks will cause serious incremental damage to the structure, and may even lead to the collapse of the station. The arc rubber bearing can reduce the damage to the station. The results can offer a reference for the seismic design of subway stations under the action of mainshock-aftershocks.

Seismic Response of Base-Isolated Bridge for Soil Types (지반조건에 대한 면진교량의 지진응답 비교)

  • 성낙구
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.455-462
    • /
    • 2000
  • In this study seismic response of a base-isolated bridge for soil types is compared. Bilinear model is used for lead rubber bearing(LRB). Accelerograms whose response spectrum matches the design spectrum for soil types are used as earthquake ground excitation. Nonlinear time history analyses using the SAP2000 program is performed. The results show that seismic response of a base-isolated bridge is increased as the soil becomes soft.

  • PDF