• 제목/요약/키워드: Lead in blood

검색결과 611건 처리시간 0.028초

일부 남자 정상인의 혈액 및 뇨중 연함량 (Lead Levels in Blood and Urine of a Normal Male Person in Korea)

  • 박종안;최주섭;이종화;이석기
    • 한국산업보건학회지
    • /
    • 제8권2호
    • /
    • pp.224-230
    • /
    • 1998
  • In order to provide a basic data for the prevention of the adverse effect of lead on health, We examined lead level in the blood and urine of 371 healthy men living in Choongchung-do from May to June, 1997. The results were as follows ; 1. Average lead level of all the subjects was $3.98{\pm}1.02{\mu}g/dl$ in blood, and $3.94{\pm}2.09{\mu}g/L$ in urine, respectively. Lead contents examined in this study were significantly lower than those of other investigators. 2. The lead levels of all the subjects in blood and urine had almost normal distribution. 3. Relation between lead content in blood and urine was a simple linear regression; its equation was "Lead level in blood=36.76+0.77 lead level in urine".

  • PDF

혈장 중 납의 만성독성 지표로의 활용에 관한 연구 (The Study on Possibility of Use of Lead in Plasma as a Chronic Toxicity Biomarker)

  • 이성배;임철홍;김남수
    • 한국산업보건학회지
    • /
    • 제29권2호
    • /
    • pp.195-207
    • /
    • 2019
  • Objectives: This study was performed to confirm whether plasma lead can be used as a chronic biomarker for the biological monitoring of exposure to lead. Methods: Lead concentrations in 66 plasma samples from retired lead workers (G.M. 60.25 years, Median 61.00 years) and 42 plasma samples from the general population (G.M. 53.76 years, Median 56.50 years) were measured using ICP/Mass. Tibia, whole blood, hemoglobin, hematocrit, and blood zinc protophorphyrin (ZPP) concentrations and urinary ${\delta}$-aminolevulinic acid (${\delta}-ALA$) were measured for correlation analysis with plasma lead. Results: The geometric mean concentration of lead in plasma was $0.23{\mu}g/L$ for the retired lead workers and $0.10{\mu}g/L$ for the general population sample. A simple correlation analysis of biomarkers showed that plasma lead concentration among the retired lead workers was highly correlated with lead concentration in the tibia and with blood lead concentration, and the plasma lead concentration among the general population correlated with ZPP concentration in the blood. The lead concentration in the tibia and the lead concentration in the whole blood increased with length of working period. As the period in the lead workplace increased, the ratio of lead in plasma to lead concentration in whole blood decreased. Conclusion: This study confirmed the possibility of a chronic biomarker of lead concentration in blood plasma as a biomarker. In the future, comparative studies with specific indicators will lead to more fruitful results.

납 사업장의 공기 중 납 농도 및 납 노출 근로자들의 납 관련 생물학적 노출 지표의 관련성에 관한 조사 (The Association of Lead Biomarkers of Lead Workers with Airborne Lead Concentration in Lead Industries)

  • 김남수;김진호;장봉기;김화성;안규동;이병국
    • 한국산업보건학회지
    • /
    • 제17권1호
    • /
    • pp.43-52
    • /
    • 2007
  • This study was designed to investigate the difference of airborne lead concentration by type of lead industries and type of lead exposure and to evaluate their association with lead biomarkers of lead workers in 11 lead using industries. Total of 182 lead workers (male: 167, female: 15) from 11 lead industries were participated for this study from March, 2004 to August, 2005. Airborne lead concentration were measured by representative personal sampling of workers in each unit workplace and applied same concentration value to the workers in the same unit workplace who did not measure their airborne lead with personal air sampling. Tibia lead, blood lead, zinc protoporphyrin in whole blood, ${\delta}$-aminolevulinic acid in urine, hemoglobin and hematocrit were selected as study variables of indices of lead exposure. Information about type of lead exposure (fume or non-fume other), age, work duration, smoking & drinking habit were also collected. Significant differences were seen in the means of zinc protoporphyrin, blood lead and tibia lead in lead workers by different airborne lead concentration in workplace. While blood lead and tibia lead in lead workers were significantly higher in secondary smelting than other types of lead industries, zinc protoporphyrin, ${\delta}$-aminolevulinic acid in urine and airborne lead concentration were significantly higher in litharge manufacturing. While the mean blood lead was significantly higher in the lead workers working in fume type unit workplace than those of non-fume lead workers, the mean airborne lead concentration of fume workers was significantly lower than non-fume lead workers. In the multiple regression analysis of airborne lead concentration and the type of lead exposure on tibia lead and lead exposure indices after adjustment of related covariates, airborne lead concentration was statistically significantly associated with blood lead and tibia lead, but the type of lead exposure was only associated with blood lead. To verify the causal association of airborne lead concentration on blood lead and tibia lead, further studies are needed.

Lead Exposure Indices, Workloads, and Environmental Factors in Battery Manufacturing Workplace

  • Cho, Kwang Sung;Jeong, Byung Yong
    • 대한인간공학회지
    • /
    • 제32권3호
    • /
    • pp.259-266
    • /
    • 2013
  • Objective: This study aims to evaluate the workloads of industrial and automobile storage battery industries and their association to biological exposure indices. Background: Occupational lead exposure at battery manufacturing workplace is the most serious problem in safety and health management. Method: We surveyed 145 workers in 3 storage battery industries. Environmental factors(lead in air, temperature, humidity and vibration)), biological exposure indices(lead in blood and zinc protoporphyrin in blood) and individual workload factors(process type, work time, task type, weight handling and restrictive clothing) were measured in each unit workplace. Results/Conclusion: Air lead concentration is statistically significant in associations with workload factors(process type, work time, task type, and restrictive clothing) and environmental factors (humidity and vibration), whereas zinc protoporphyrin in blood are significantly associated with work time and weight handling. And lead in blood is significantly associated with work time, weight handling and temperature. Application: The results of this study are expected to be a fundamental data to job design.

저농도 연폭로에서 혈중 연농도와 자각증상과의 관계 (Relationship of between blood lead level and lead related symptoms in low level lead exposure)

  • 황규윤;안재억;안규동;이병국;김정순
    • Journal of Preventive Medicine and Public Health
    • /
    • 제24권2호
    • /
    • pp.181-194
    • /
    • 1991
  • This study intended to obtain an useful information on the prevalence of subjective symptoms, and to clarify the interrelationships between blood lead and lead related symptoms in low level lead exposure. The 93 male workers exposed to lead and 56 male nonexposed workers were examined for their blood lead(PBB), Zinc-protoporphy(ZPP), hemoglobin(HB) and personnal history, and completed 15 questionnaires related to symptoms of lead absorption : also measured lead concentration in air (PBA) in the workplace. The results obtained were as follows ; 1. The means of blood lead (PBB), blood ZPP and hemoglobin (HB) among workers exposed to lead were $26.1{\pm}8.8{\mu}g/dl,\;28.3{\pm}26.0{\mu}g/dl$ and $16.2{\pm}1.2g/dl$ : whereas those of nonexposed workers were $18.7{\pm}5.1{\mu}g/dl,\;20.6{\pm}8.7{\mu}g/dl$ and $17.3{\pm}1.1g/dl$. The means of above three indicies between two groups showed significant difference statistically (p<0.05). 2. The means of blood lead (PBB), blood ZPP and hemoglobin of workers exposed .to different lead concentration in air were as follows : When it was below $25{\mu}g/m^3$, the indices were $24.7{\pm}79,\;26.1{\pm}26.8{\mu}g/dl\;and\;16.4{\pm}1.1g/dl$ respectively : These indices were $27.1{\pm}8.5,\;23.9{\pm}10.92{\mu}g/dl\;and\;16.2{\pm}1.3g/dl$ when the lead concentration in air was $25{\sim}50{\mu}g/m^3$ : and they were $3.4{\pm}9.3,\;42.3{\pm}31.3{\mu}g/dl\;and\;15.5{\pm}1.2g/dl$ when the concentration of lead was above $50{\mu}g/m^3$. Although there were statistical difference in blood lead and hemoglobin among three different lead concentration in air, there was no statistical difference of blood ZPP among the three groups with different exposure levels (p>0.05). 3. The most frequent by complained symptom was 'Generalized weakness and fatigue', and fewest symptom was 'Intermittent pains in abdomen' 4. Only two symptoms out of fifteen symptoms checked by themselves revealed significant difference between exposed and nonexposed groups. These were 'Intermittent pains of abdomen' and 'Joint pain or arthralgia' (p<0.05), No positive correlation was found between the levels of blood lead and symptom groups categorized as gastrointestinal, neuromuscular and constitutional symptoms, 5. Blood lead (r=0.3995) and ZPP (r=0.2837) showed statistically significant correlation with mean lead concentration in air, whereas correlations were not demonstrated between blood lead and lead related symptoms or blood ZPP and lead related symptoms. 6. Blood lead (PBB) and ZPP showed association (r=0.2466) and the equation PBB=23.75+0.0842 ZPP was derived. 7. On stepwise multiple regression, using blood lead level as a dependent variable and ZPP, hemoglobin (HB), age, work duration (WD) and symptom prevalence as a independent variables, only ZPP significantly contributed a lot to blood lead level. 8. While the ZPP measurement was found to be a good indicator in evaluating health effect of lead absorption in low level lead exposure, lead related symptoms were not sensitive enough to evaluate of lead absorption in low level exposure.

  • PDF

Reference values of lead in blood and related factors among Korean adolescents: the Korean National Health and Nutrition Examination Survey 2010-2013

  • Choi, Min-Gyu;Park, Mi-Jung;Kim, Shin-Hye
    • Clinical and Experimental Pediatrics
    • /
    • 제59권3호
    • /
    • pp.114-119
    • /
    • 2016
  • Purpose: This study aimed to assess the reference values and factors influencing blood lead levels among Korean adolescents. Methods: The study population consisted of 1,585 adolescents (801 males, 784 females; aged 10-19 years) who participated in the Korea National Health and Nutrition Examination Survey 2010-2013. We analyzed blood lead concentrations in relation to demographic/lifestyle characteristics for all participants. "Reference values" of blood lead levels were calculated as the upper limit of the 95% confidence interval of the 95th percentile. Results: The average "reference value" for blood lead concentrations among Korean adolescents was $2.25{\mu}g/dL$ ($2.49{\mu}g/dL$ for males, $2.07{\mu}g/dL$ for females), and the geometric mean of the blood lead concentrations was $1.34{\mu}g/dL$. Males had higher blood lead concentrations than females (male, $1.48{\mu}g/dL$; female, $1.19{\mu}g/dL$; P<0.001). Elementary school students had higher blood lead concentrations than junior and senior high school students ($1.44{\mu}g/dL$ vs. $1.31{\mu}g/dL$, P<0.001). Participants living in detached houses had higher blood lead concentrations than those living in apartments (P<0.001) and current smokers had higher concentrations than nonsmokers or participants with secondhand smoke exposure (P<0.05). Additionally, participants with excessive alcohol consumption had higher levels than non-drinkers (P<0.001). Conclusion: This study provides national reference data on blood lead concentrations stratified by demographic and lifestyle factors among Korean adolescents. Further studies are needed to elucidate the relationship between increased lead exposure and demographic factors including type of housing.

An Examination of Blood Lead Levels in Thai Nielloware Workers

  • Decharat, Somsiri;Kongtip, Pornpimol;Thampoophasiam, Prapin;Thetkathuek, Anamai
    • Safety and Health at Work
    • /
    • 제3권3호
    • /
    • pp.216-223
    • /
    • 2012
  • Objectives: The objectives of this study were to determine the lead levels in blood samples from nielloware workers, to determine airborne lead levels, to describe the workers' hygiene behaviors, and to ascertain and describe any correlations between lead levels in blood samples and lead levels in airborne samples. Methods: Blood samples and airborne samples from 45 nielloware workers were collected from nielloware workplaces in Nakhon Sri Thammarat Province, Thailand. Lead levels were determined by flame atomic absorption spectrometry (FAAS), at a wavelength of 283.3 nm. FAAS was used especially adequate for metals at relatively high concentration levels. Results: The geometric mean of the 45 airborne lead levels was 81.14 ${\mu}g/m^3$ (range 9.0-677.2 ${\mu}g/m^3$). The geometric mean blood lead level of the 45 workers was 16.25 ${\mu}g/dL$ (range 4.59-39.33 ${\mu}g/dL$). No worker had a blood lead level > 60 ${\mu}g/dL$. A statistically significantly positive correlation was found between airborne lead level and blood lead levels (r = 0.747, p < 0.01). It was observed that personal hygiene was poor; workers smoked and did not wash their hands before drinking or eating. It was concluded that these behaviors had a significant correlation with blood lead levels (p < 0.001). Conclusion: Improvements in working conditions and occupational health education are required due to the correlation found between blood leads and airborne lead levels.

산모 혈액과 탯줄 혈액의 연(鉛)함량에 관한 연구 (The Study of Lead Concentration in Maternal and Umbilical Cord Blood)

  • 김동준;김명희;정애순;강신명
    • The Korean Journal of Physiology
    • /
    • 제11권2호
    • /
    • pp.63-66
    • /
    • 1977
  • Motor vehicles are the major source of environmental air pollution through the combustion of lead-containing gasolines. People who live in the areas with heavy traffic usually have the higher blood lead levels. This study was to investigate the lead level between the maternal blood and their infants cord blood. Immediatly after Placental delivary, the sampls of cord blood and maternal venous blood were obtained randomly from 14 infants whose mothers had spent their entire pregnancy in Seoul. Lead concentration was determined by the dithizone method. The results obtained were summarized as follows: 1. Hemoglobin, Hct and RBC were significantly higher in cord blood than in the maternal blood, by 36%, 54.9%, 36.9% respectively. 2. MCV in cord blood was higher than that in maternal blood by 13.8%. But MCH and MCHC were lower than those in maternal blood, by 9.7%, 3.3% respectively. The differences were statistically significant. 3. Lead concentration of cord blood $(23.93\;{\mu}g%)$ was higher than that in maternal blood $(21.93\;{\mu}%)$ by 9.1%.

  • PDF

다양한 위해성평가 방법에 따라 도출한 토양오염 판정기준의 차이에 관한 연구(III): 우리나라 납 오염 위해성평가 방법 제안 (Analysis on the Risk-Based Screening Levels Determined by Various Risk Assessment Tools (III): Proposed Methodology for Lead Risk Assessment in Korea)

  • 정재웅;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권6호
    • /
    • pp.1-7
    • /
    • 2015
  • The most critical health effect of lead exposure is the neurodevelopmental effect to children caused by the increased blood lead level. Therefore, the endpoint of the risk assessment for lead-contaminated sites should be set at the blood lead level of children. In foreign countries, the risk assessment for lead-contaminated sites is conducted by estimating the increased blood lead level of children via oral intake and/or inhalation (United States Environmental Protection Agency, USEPA), or by comparing the estimated oral dose to the threshold oral dose of lead, which is derived from the permissible blood lead level of children (Dutch National Institute for Public Health and the Environment, RIVM). For the risk assessment, USEPA employs Integrated-Exposure-Uptake-Biokinetic (IEUBK) Model to check whether the estimated portion of children whose blood lead level exceeds 10 µg/dL, threshold blood lead level determined by USEPA, is higher than 5%, while Dutch RIVM compares the estimated oral dose of lead to the threshold oral dose (2.8 µg/kg-day), which is derived from the permissible blood lead level of children. In Korea, like The Netherlands, risk assessment for lead-contaminated sites is conducted by comparing the estimated oral dose to the threshold oral dose; however, because the threshold oral dose listed in Korean risk assessment guidance is an unidentified value, it is recommended to revise the existing threshold oral dose described in Korean risk assessment guidance. And, if significant lead exposure via inhalation is suspected, it is useful to employ IEUBK Model to derive the risk posed via multimedia exposure (i.e., both oral ingestion and inhalation).

납에 노출된 흰쥐의 혈액과 조직의 납 함량 및 병변에 대한 키토산의 섭취효과 (Effects of Chitosan on the Lead Level and Histological Changes in Rats Exposed to Various Levels of Lead)

  • 박주란;김미혜;이연숙
    • Journal of Nutrition and Health
    • /
    • 제38권1호
    • /
    • pp.48-55
    • /
    • 2005
  • Chitosan, which is a biopolymer, composed of glucosamine units linked by $\beta$-1, 4 glycoside bonds, is rich in shells of crustacean such as crabs and shrimps. Consumption of chitosan has been rapidly increased as a functional food. We examined effects of chitosan on the damages caused by lead (Pb) exposure in rats. Male Sprague-Dawley rats were divided into 8 groups (n = 64), then fed diets containing 3% cellulose (control) or 3% chitosan, each with 4 different lead doses (0 mg/d, 20 mg/d, 50 mg/d, and 100 mg/d) for 4 wks. Lead doses were given 3 times per week by oral administration. Blood lead levels in rats increased depending on the administered doses of lead. Rats fed chitosan diets showed lower blood lead concentration than did their respective controls. Effect of chitosan on the blood lead was more beneficial in rats exposed to lower lead (20 mg/d) than in rats exposed to higher lead (50 mg/d and 100 mg/d). Histological changes in erythrocytes and liver were also examined. Chitosan tended to reduce numbers of basophilic stippling erythrocytes and improve the histological liver changes in rats given various lead doses. The preventive effects of chitosan on liver damages were stronger in rats with higher lead than those with lower lead. These results indicate that chitosan has beneficial effects on both blood toxicological responses and histological damages of erythrocytes and liver induced by the administration of various lead doses.