• 제목/요약/키워드: Lead Ions

검색결과 232건 처리시간 0.029초

저염분 바이오플락에서 사육한 흰다리새우(Litopenaeus vannamei)의 해수 순치방법에 따른 혈장성분 및 혈장삼투압 비교 (Effect of Acclimation Methods on Physiological Status of Pacific White Shrimp Litopenaeus vannamei Bred in Low Salinity Biofloc)

  • 전유현;이종민;김수경;김수경
    • 한국수산과학회지
    • /
    • 제54권5호
    • /
    • pp.761-768
    • /
    • 2021
  • This study was carried out to identify an effective method to acclimate low-salinity (4 psu) bred Litopenaeus vannamei (mean body weight 16±3.3 g) to sea water. The fast acclimation group (FA) was directly exposed to filtered sea water (32 psu) while the slow acclimation group (SA) was exposed to a slow increase in salinity. Shrimps were sampled at 0, 1, 3, 6, 12, 24 and 48 h for plasma analyses. The plasma components between experimental groups did not show significant differences. The hemolymph osmolality (HO) in FA increased significantly after 1 h (P<0.05), while in SA it started to increase slowly only at 24 h and reached a similar level to that of FA at 48 h. The levels of Na+ and Mg2+ ions were significantly different between the two treatments (P<0.05), but there was no significant difference in Ca2+ ion levels. We found that the different methods of acclimation of L. vannamei to sea water do not affect the plasma components significantly, but lead to changes in the HO and ion levels, it is considerable to acclimate gradually for at least two days.

우드칩을 연료로 하는 열병합발전소의 회분 퇴적 및 설비 고장 원인 분석 (Investigating the Cause of Ash Deposition and Equipment Failure in Wood Chip-Fueled Cogeneration Plant)

  • 송민지;김우철;김희산;김정구;이수열
    • Corrosion Science and Technology
    • /
    • 제22권3호
    • /
    • pp.187-192
    • /
    • 2023
  • The use of biomass is increasing as a response to the convention on climate change. In Korea, a method applied to replace fossil fuels is using wood chips in a cogeneration plant. To remove air pollutants generated by burning wood chips, a selective denitrification facility (Selective catalytic reduction, SCR) is installed downstream. However, problems such as ash deposition and descaling of the equipment surface have been reported. The cause is thought to be unreacted ammonia slip caused by ammonia ions injected into the reducing agent and metal corrosion caused by an acidic environment. Element analysis confirmed that ash contained alkali metals and sulfur that could cause catalyst poisoning, leading to an increase in the size of ash particle and deposition. Measurement of the size of ash deposited inside the facility confirmed that the size of ash deposited on the catalyst was approximately three times larger than the size of generally formed ash. Therefore, it was concluded that a reduction in pore area of the catalyst by ash deposition on the surface of the catalyst could lead to a problem of increasing differential pressure in a denitrification facility.

Antibacterial mesoporous Sr-doped hydroxyapatite nanorods synthesis for biomedical applications

  • Gopalu Karunakaran;Eun-Bum Cho;Keerthanaa Thirumurugan;Govindan Suresh Kumar;Evgeny Kolesnikov;Selvakumar Boobalan
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.507-519
    • /
    • 2023
  • Postsurgical infections are caused by implant-related pathogenic microorganisms that lead to graft rejection. Hence, an intrinsically antibacterial material is required to produce a biocompatible biomaterial with osteogenic properties that could address this major issue. Hence, this current research aims to make strontium-doped hydroxyapatite nanorods (SrHANRs) via an ethylene diamine tetraacetic acid (EDTA)-enable microwave mediated method using Anodontia alba seashells for biomedical applications. This investigation also perceives that EDTA acts as a soft template to accomplish Sr-doping and mesoporous structures in pure hydroxyapatite nanorods (HANRs). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis reveals the crystalline and mesoporous structures, and Brunauer-Emmett-Teller (BET) indicates the surface area of all the samples, including pure HANRs and doped HANRs. In addition, the biocidal ability was tested using various implant-related infectious bacteria pathogens, and it was discovered that Sr-doped HANRs have excellent biocidal properties. Furthermore, toxicity evaluation using zebrafish reports the non-toxic nature of the produced HANRs. Incorporating Sr2+ ions into the HAp lattice would enhance biocompatibility, biocidal activity, and osteoconductive properties. As a result, the biocompatible HANRs materials synthesized with Sr-dopants may be effective in bone regeneration and antibacterial in-built implant applications.

금속성 임플란트로 인한 만성 염증 상태와 연관된 미만성 거대 B세포 림프종: 증례 보고 (Diffuse Large B-Cell Lymphoma Associated with a Chronic Inflammatory Condition Induced by Metallic Implants: A Case Report)

  • 박진희;이선주;추혜정
    • 대한영상의학회지
    • /
    • 제83권4호
    • /
    • pp.931-937
    • /
    • 2022
  • 금속성 임플란트 삽입과 관련된 만성 염증 상태는 미만성 거대 B세포 림프종 발생의 위험 요소이다. 금속 이온은 림프종의 발병에 중요한 역할을 하는 것으로 알려져 있다. 저자들은 15개월 동안 근위 경골에 금속성 임플란트가 삽입된 환자에서 발생한 드문 미만성 거대 B세포 림프종 증례를 보고하고자 한다. 초음파 및 자기공명영상을 촬영하였으며 현저한 골 파괴 없이 불균형적으로 큰 골외 연조직 종괴와 골수 침범이 관찰되었다. 금속성 임플란트 삽입과 관련된 여러 합병증들이 있으며 오진하면 잘못된 치료로 이어질 수 있다. 따라서 금속성 임플란트로 인한 만성 염증 상태와 연관된 림프종과 임플란트 주위에 발생할 수 있는 다른 양성 병변 및 악성 연조직 종괴를 감별하는 것은 어렵지만 매우 중요하다.

옥천대(沃川帶) 우라늄광층(鑛層)의 구조규제(構造規制) 및 지구화학적(地球化學的) 특성연구(特性硏究) (Lithologic and Structural Controls and Geochemistry of Uranium Deposition in the Ogcheon Black-Slate Formation)

  • 이대성;윤석규;이종혁;김정택
    • 자원환경지질
    • /
    • 제19권spc호
    • /
    • pp.19-41
    • /
    • 1986
  • Structural, radioactive, petrological, petrochemical, mineralogical and stable isotopic study as well as the review of previous studies of the uranium-bearing slates in the Ogcheon sequence were carried out to examine the lithological and structural controls, and geochemical environment in the uranium deposition in the sequence. And the study was extended to the coal-bearing formation (Jangseong Series-Permian) to compare the geochemical and sedimentologic aspects of uranium chemistry between Ogcheon and Hambaegsan areas. The results obtained are as follows: 1. The uranium mineralization occurs in the carbonaceous black slates of the middle to lower Guryongsan formation and its equivalents in the Ogcheon sequence. In general, two or three uranium-bearing carbonaceous beds are found with about 1 to 1.5km stratigraphic interval and they extend from Chungju to Jinsan for 90km in distance, with intermittent igneous intrusions and structural Jisturbances. Average thickness of the beds ranges from 20 to 1,500m. 2. These carbonaceous slate beds were folded by a strong $F_1$-fold and were refolded by subsequent $F_1$-fold, nearly co-axial with the $F_1$, resulting in a repeated occurrence of similar slate. The carbonaceous beds were swelled in hing zones and were shrinked or thined out in limb by the these foldings. Minor faulting and brecciation of the carbonaceous beds were followed causing metamorphism of these beds and secondary migration and alteration of uranium minerals and their close associations. 3. Uranium-rich zones with high radioactive anomalies are found in Chungju, Deogpyong-Yongyuri, MiwonBoun, Daejeon-Geumsan areas in the range of 500~3,700 cps (corresponds to 0.017~0.087%U). These zones continue along strike of the beds for several tens to a few hundred meters but also discontinue with swelling and pinches at places that should be analogously developed toward underground in their vertical extentions. The drilling surveyings in those area, more than 120 holes, indicate that the depth-frequency to uranium rich bed ranging 40~160 meter is greater. 4. The features that higher radioactive anomalies occur particularly from the carbonaceous beds among the argillaceous lithologic units, are well demonstrated on the cross sections of the lithology and radioactive values of the major uranium deposits in the Ogcheon zone. However, one anomalous radioactive zone is found in a l:ornfels bed in Samgoe, near Daejeon city. This is interpreted as a thermal metamorphic effect by which original uranium contents in the underlying black slate were migrated into the hornfels bed. 5. Principal minerals of the uranium-bearing black slates are quartz, sericite, biotite and chlorite, and as to chemical composition of the black slates, $Al_2O_3$ contents appear to be much lower than the average values by its clarke suggesting that the Changri basin has rather proximal to its source area. 6. The uranium-bearing carbonaceous beds contain minor amounts of phosphorite minerals, pyrite, pyrrhotite and other sulfides but not contain iron oxides. Vanadium. Molybdenum, Barium, Nickel, Zirconium, Lead, Cromium and fixed Carbon, and some other heavy metals appear to be positive by correlative with uranium in their concentrations, suggesting a possibility of their genetic relationships. The estimated pH and Eh of the slate suggests an euxenic marine to organic-rich saline water environment during uranium was deposited in the middle part of Ogcheon zone. 7. The Carboniferous shale of Jangseong Series(Sadong Series) of Permian in Hambaegsan area having low radioactivity and in fluvial to beach deposits is entirely different in geochemical property and depositional environment from the middle part of Ogcheon zone, so-called "Pibanryong-Type Ogcheon Zone". 8. Synthesizing various data obtained by several aspects of research on uranium mineralization in the studied sequence, it is concluded that the processes of uranium deposition were incorporated with rich organic precipitation by which soluble uranyl ions, $U{_2}^{+{+}}$ were organochemically complexed and carried down to the pre-Ogcheon sea bottoms formed in transitional environment, from Red Sea type basin to Black Sea type basin. Decomposition of the organic matter under reducing conditions to hydrogen sulfide, which reduced the $UO{_2}^{+2}$ ions to the insoluble uranium dioxide($UO_2$), on the other side the heavy metals are precipitated as sulfides. 9. The EPMA study on the identification of uraninite and others and the genetic interpretation of uranium bearing slates by isotopic values of this work are given separately by Yun, S. in 1984.

  • PDF

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF

환우(換羽, molting)에 의한 절식 후 산란계의 혈액 $Mg^{2+}$$K^+$ 변동 (Changes of Blood $Mg^{2+}$ and $K^+$ after Starvation during Molting in Laying Hens)

  • 고현규;이세진;조인국;이문영;박혜민;문아름;김정곤;김기범;김진상;강형섭;김상진
    • 한국임상수의학회지
    • /
    • 제28권6호
    • /
    • pp.581-585
    • /
    • 2011
  • 자연적 혹은 인위적 환우 기간의 절식은 산란계에서 심각한 대사성 스트레스가 될 수 있다. 절식 그리고 필수적으로 수반되는 사료 재급여 증후군의 대사성 스트레스는 ATP 생성과 밀접한 $Mg^{2+}$, $K^+$과 P 등의 무기염류 불균형을 야기할 수 있다. $Mg^{2+}$은 생체 대상과정에서 필수적인 무기염류이며 스트레스는 생체 $Mg^{2+}$ 요구량을 증가시킬 뿐만 아니라 $Mg^{2+}$ 결핍을 야기할 수 있기 때문에 산란계에서 환우 기간의 절식에 관련된 혈액내 이온의 이온화 농도 및 결합형을 포함한 총농도의 변동을 관찰하였다. 환우 후에 대사성 스트레스와 관련된 생화학 인자의 변화와 수반하여 혈액내 $Mg^{2+}$$K^+$의 감소가 관찰되었다. 따라서 환우 기간의 절식 및 사료 재급여 증후군은 심각한 저마그네슘혈증 및 저칼륨혈증을 야기할 수 있으므로 환우 그리고 재급여 과정에서 $Mg^{2+}$$K^+$의 투여가 권장된다.

Nanomaterials Research Using Quantum Beam Technology

  • Kishimoto, Naoki;Kitazawa, Hideaki;Takeda, Yoshihiko
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.7-7
    • /
    • 2011
  • Quantum beam technology has been expected to develop breakthroughs for nanotechnology during the third basic plan of science and technology (2006~2010). Recently, Green- or Life Innovations has taken over the national interests in the fourth basic science and technology plan (2011~2015). The NIMS (National Institute for Materials Science) has been conducting the corresponding mid-term research plans, as well as other national projects, such as nano-Green project (Global Research for Environment and Energy based on Nanomaterials science). In this lecture, the research trends in Japan and NIMS are firstly reviewed, and the typical achievements are highlighted over key nanotechnology fields. As one of the key nanotechnologies, the quantum beam research in NIMS focused on synchrotron radiation, neutron beams and ion/atom beams, having complementary attributes. The facilities used are SPring-8, nuclear reactor JRR-3, pulsed neutron source J-PARC and ion-laser-combined beams as well as excited atomic beams. Materials studied are typically fuel cell materials, superconducting/magnetic/multi-ferroic materials, quasicrystals, thermoelectric materials, precipitation-hardened steels, nanoparticle-dispersed materials. Here, we introduce a few topics of neutron scattering and ion beam nanofabrication. For neutron powder diffraction, the NIMS has developed multi-purpose pattern fitting software, post RIETAN2000. An ionic conductor, doped Pr2NiO4, which is a candidate for fuel-cell material, was analyzed by neutron powder diffraction with the software developed. The nuclear-density distribution derived revealed the two-dimensional network of the diffusion paths of oxygen ions at high temperatures. Using the high sensitivity of neutron beams for light elements, hydrogen states in a precipitation-strengthened steel were successfully evaluated. The small-angle neutron scattering (SANS) demonstrated the sensitive detection of hydrogen atoms trapped at the interfaces of nano-sized NbC. This result provides evidence for hydrogen embrittlement due to trapped hydrogen at precipitates. The ion beam technology can give novel functionality on a nano-scale and is targeting applications in plasmonics, ultra-fast optical communications, high-density recording and bio-patterning. The technologies developed are an ion-and-laser combined irradiation method for spatial control of nanoparticles, and a nano-masked ion irradiation method for patterning. Furthermore, we succeeded in implanting a wide-area nanopattern using nano-masks of anodic porous alumina. The patterning of ion implantation will be further applied for controlling protein adhesivity of biopolymers. It has thus been demonstrated that the quantum beam-based nanotechnology will lead the innovations both for nano-characterization and nano-fabrication.

  • PDF

PEMFCB금속분리판 코팅 기술 개발 : I. 표면 및 부식 특성 평가 (Development of Surface Coating Technology fey Metallic Bipolar Plate in PEMFC : I. Study on Surface and Corrosion Properties)

  • 정경우;김세융;양유창;안승균;전유택;나상묵
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.348-351
    • /
    • 2006
  • Bipolar plate, which forms about 50% of the stack cost, is an important core part with polymer electrolyte membrane in PEMFC. Bipolar plates have been commonly fabricated from graphite meterial having high electrical conductivity and corrosion resistance. Lately, many researchers have concentrated their efforts on the development of metallic bipolar plate and stainless steel has been considered as a potential material for metallic bipolar plate because of its high strength, chemical stability, low gas permeability and applicability to mass production. However, it has been reported that its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions and an increase in contact resistance by the growth of passive film therefore, its corrosion resistance as well as contact resistance must be improved for bipolar plate application. In this work, several types of coating were applied to 316L and their electrical conductivity and corrosion resistance were evaluated In the simulated PEMFC environment. Application of coating gave rise to low interfacial contact resistances below $19m{\Omega}cm^2$ under the compress force of $150N/cm^2$. It also made the corrosion potential to shift in the posit ive direct ion by 0.3V or above and decreased the corrosion current from ca. $9{\mu}A/cm^2$ to ca. $0.5{\mu}A/cm^2$ in the mixed solution of $0.1N\;N_2SO_4$ and 2ppm HF A coat ing layer under potentiostatic control of 0.6V and $0.75V_{SCE}$ for 500 hours or longer showed some instabilities, however, no significant change in coat Ing layer were observed from Impedance data. In addition, the corrosion current maintained less than $1{\mu}A/cm^2$ for most of time for potentiostatic tests. It indicates that high electrical conductivity and corrosion resistance can be obtained by application of coatings in the present work.

  • PDF

우라늄함유 화학폐수의 적정처리 기술 (Alternative Method for the Treatment of Chemical Wastes Containing Uranium)

  • 김길정;손종식;홍권표
    • 방사성폐기물학회지
    • /
    • 제4권2호
    • /
    • pp.179-186
    • /
    • 2006
  • 원자력을 이용하는 시설 및 그와 관련한 연구개발실험실로부터 각종 화학폐수가 다량으로 발생되고 있으며 이들 폐수를 화학폐수 전용처리시설로 처리하고 있으나 최종 건조 케이크내에 함유된 우라늄의 농도가 규제면제농도인 10 Bq/g을 약간 초과하므로서 방사성폐기물로 분류하여 별도로 저장하고 있다. 화학폐수 처리후 침전된 슬러지내의 우라늄 농도를 분석한 결과 우라늄이 용액상이 아닌 침전물상에 존재함을 알았으며, 이들 우라늄을 침전물로부터 용액상으로 용해하기 위하여 강질산으로 용해시켰다. 그 결과 대부분의 우라늄이 슬러지의 침전물로부터 용액상으로 용출되었으며, 용해후 얻어진 슬러지 산용해액에 대해 IRN-77과 비드형으로 새로 제조한 다이포실 수지를 실 폐액처리에 적용하기 위한 흡착실험을 수행하였다. IRN-77과 다이포실 비드를 단독, 혼합 또는 단계적으로 사용한 결과, 80%이상의 우라늄 흡착효율을 얻기 위해서는 산용해액과 동등량 또는 그 이상의 다량의 수지가 소요되었다. 한편 침전 슬러지를 압착하여 부피가 더욱 축소된 탈수케이크를 산용해한 결과, 탈수케이크 대 질산의 비율이 3:2에서 우라늄의 함량을 최대 11 mg/L을 얻었으며 슬러지 용해시보다 적은 양으로 산용해가 가능하였다. 탈수 케이크 산용해액의 방사능 농도는 6.97E-01 Bq/ml 로서 기존의 자연증발처리시설에서 처리가 가능한 수준이었으며, 건조케이크의 비방사능은 11.2 Bq/g로서 최종 폐기물로 발생될 폐증발천의 비방사능이 4.3 Bq/g으로 평가되어 우라늄 동위원소의 규제면제치인 10 Bq/g 미만이므로 자체처분이 가능한 수준이었다. 결론적으로 화학폐수를 처리한 후 부피가 최소화된 탈수케이크에서 우라늄을 산용해시키고 최종 산용해액은 기존의 자연증발시설로 증발처리하면 방사성 건조케이크의 발생 없이 또한 자연증발천도 자체처분이 가능한 최적의 방안을 도출하였다.

  • PDF