• Title/Summary/Keyword: Lead Ions

Search Result 232, Processing Time 0.021 seconds

기능성기를 지닌 고분자 자성체를 이용한 수용액 중 납이온 추출

  • 서형석;최규찬;나인욱;황경엽
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.175-176
    • /
    • 2004
  • To develope of efficient method for decontaminating of lead ions from industrial wastewater, treatment of aqueous lead solution with magnetic beads was investigated. Immobilization of carboxyl groups on tile surface of magnetic beads was carried out to introduce chelate effect between lead ions and beads. Experiments were performed with lead solutions and magnetic beads at pH 6. Lead ions were extracted during 1 hour, After extraction, magnetic beads were separated from water by outer magnetic force and the solution was analysed by atomic absorption spectroscopy (AAS). Over 90 % of lead ions could be removed from aqueous solution after beads application. This result indicate that magnetic beads can be used as a efficient method for removing lead ions from industrial wastewater.

  • PDF

Biosorption of lead by Laminaria japonica

  • Jung-Ho;Il-Bae;Hak-Sung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.208-211
    • /
    • 2003
  • Characteristics of biosorption of lead by marine algae, Laminaria japonica, were examined. The biosorption capacity of lead by L. japonica was achieved up to 30% of its own weight and proportional to the initial lead concentration. However, the opposite result was shown in different initial weight of biomass. Ion exchange reaction between lead ions and calcium ions was observed on lead biosorption with Ca-Ioaded biomass. Stoichiometric coefficient, which can represent the exchange ratio between metal ions and protons during elution process, was determined as 1.39. Therefore, it was concluded that the reaction between lead ions already attached in biomass and protons in bulk solution was not fully stoichiometric ion exchange relation at elution process.

  • PDF

Efficient Detection of Heavy Metal Lead Ions in Aqueous Media using Aggregation-Induced Emission (AIE)-based Turn-on Fluorescence Sensor (Aggregation-Induced Emission (AIE) 기반의 Turn-On 형광센서를 이용한 수질 속 중금속 납 이온의 효율적인 검출 )

  • Haemin Choi;Hyeonjeong Seong;Juyeon Cha;Seoung Ho Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.11
    • /
    • pp.757-765
    • /
    • 2023
  • Lead, a heavy metal widely employed in various industries, continues to pose a threat to both human health and the environment. Therefore, the development of a sensor capable of rapidly and accurately detecting lead(II) ions in real-time at contaminated sites is crucial. In this study, we have engineered a fluorescent sensor with the ability to efficiently detect lead(II) ions under actual environmental conditions, including tap water and freshwater. The compound, tetraphenylethylene carboxylic acid derivative (TPE-COOH), exhibits high selectivity and sensitivity toward lead(II) ions in aqueous solution, where the interaction between TPE-COOH and lead(II) ions leads to its aggregation, thus triggering a fluorescence "turn-on" based on the aggregation-induced emission (AIE) mechanism. Impressively, compound TPE-COOH proficiently detects lead(II) ions within a range of 30 to 100 𝜇M in tap water and freshwater, even in the presence of various interfering substances.

Solidification of Heavy Metal Ions Using Magnesia-phosphate Cement (인산염 마그네시아 시멘트에 의한 중금속 이온 고정화)

  • Choi, Hun;Kang, Hyun-Ju;Song, Myung-Shin;Jung, Eui-Dam;Kim, Ju-Seng
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.20-25
    • /
    • 2011
  • Since 1980's, many mines have been closed and abandoned due to the exhaustion of deposits and declining prices of international mineral resources. Because of the lack of post management for these abandoned mines, Farm land and rivers were contaminated with heavy metal ions and sludge. We studied on the solidification/stabilization of heavy metal ions, chromium ions and lead ions, using magnesia-phosphate cement. Magnesia binders were used calcined-magnesia and dead-burned magnesia. Test specimens were prepared by mixing magnesia binder with chromium ions and lead ions and activators. We analyzed the hydrates by reaction between magnesiaphosphate cement and each heavy metal ions by XRD and SEM-EDAX, and analyzed the content of heavy metal ions in the eruption water from the specimens for the solidification and stabilization of heavy metal ions by ICP. The results was shown that calcined magnesia binder is effective in stabilization for chromium ions and dead-burned magnesia binder is effective in stabilization for lead ions.

Characteristics of heavy metal adsorption by Korean marine algae

  • Park, Jun-Sub;Park, Chang-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.252-256
    • /
    • 2005
  • Removal of heavy metal ions from aqueous solution by brown sea weeds (Hizikia fusiformis, Laminaria, and Undaria pinnatifida) was 80-96% for lead, cadmium, chromium and copper ions. Fifty percent of the adsorption was completed in 4 min. The uptake of lead and cadmium ions followed Langmuir adsorption. In the adsorption experiments using single and multi metal ions 80-95% of metal ions were removed, and the removal efficiency was the best for lead ion.

  • PDF

Heavy Metal Removal using Sawdust (톱밥을 이용한 중금속 제거에 관한 연구)

  • Jeon, Choong;Kim, Jung Hwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.2
    • /
    • pp.81-88
    • /
    • 2007
  • A study on the removal of heavy metals using sawdust was performed. Among heavy metals such as lead, copper and cadmium ions, uptake capacity of lead ions was the highest as about 0.22 mmol/g-dry mass at pH 4. The surface condition and existence of lead ions onto the sawdust was confirmed by the FT-IR, SEM (Scanning Electron Microscopy), and EDX (Energy Dispersive X-ray) instrumental analyses. When 0.5g of sawdust was added to initial lead solution (100ppm) removal efficiency was approximately 90%. Isothermal adsorption curve for lead ions was described by the Langmuir model equation and experimental data well fitted to model equation. Most adsorption for lead ions was also completed within 60min and pH of lead solution from 5.8 to 4.5 decreased with time.

  • PDF

Biosorption Model for Binary Adsorption Sites

  • Jeon, Choong;Park, Jae-Yeon;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.781-787
    • /
    • 2001
  • The binding of heavy metals by a biosorbent with binary functional groups was mathematically modeled. An FT-IR spectrophotometer analysis was employed to determine the stoichiometry between the protons in the functional groups of alginic acid and lead ions as a model system. The results calculated using an equilibrium constant agreed well with the experimental results obtained under various operating conditions, such as pH and metal ion concentration. It was also shown that the overall adsorption phenomenon of alginic acid was mainly due to its carboxyl groups. The equilibrium constants for each functional group successfully predicted the lead adsorption of ${\alpha}$-cellulose. Furthermore, the biosorption model could predict the adsorption phenomena of two metal ions, lead ions and calcium ions, relatively.

  • PDF

Removal of Lead Ions from Aqueous Solution Using Juniperus chinenensis Waste (폐향나무를 이용한 수용액에서 납 이온 제거)

  • Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.428-432
    • /
    • 2013
  • From the forest areas in Chungbuk, large amounts of wood wastes by pruning are generated, however most of them considered as by-products are not treated properly with no disposal options. In this work, among diverse wood wastes such as Quercus variabillis, Juniperus chinensis, Larix kaemoferi, and Pinus densiflora, Juniperus chinensis was found to be more effective biosorbent for the removal of lead ions than other wood wastes. Also, the enhancement of lead removal efficiency from the aqueous phase was investigated using Juniperus chinensis waste. It was observed that the optimal initial pH to increase the removal efficiency of 20 mg/L lead ions was 4.0 and the optimal dosage concentration with regard to the biosorbent for the enhanced removal of 50 mg/L lead ions was 0.6 g/100 mL. In addition, chemical treatment of Juniperus chinensis waste with sulfuric acid was required to improve the adsorption capacity for high lead concentrations (over 100 mg/L). When Juniperus chinensis waste was chemically treated with 6 M sulfuric acid, the adsorption quantities of lead ions were 180, 340, and 425 mg/g with regard to 200, 400, and 500 mg/L lead ions concentrations, respectively. These results indicate that the practical biosorbent technology developed in this study is a highly efficient method to treat the lead ion from an aqueous solution.

A Study on Heavy Metal Removal Using Alginic Acid (알긴산을 이용한 중금속 제거에 관한 연구)

  • Jeon, Choong;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.107-114
    • /
    • 2007
  • A study on the removal of heavy metals using alginic acid, a kind of polysaccharides, was performed. Alginic acid adsorbed 480 mg Pb/g dry mass at pH 4, which was about twice as high as uptake capacity of other biosorbents. Isothermal adsorption curve for lead ions was described by the Langmuir model equation and the experimental data well fitted to model equation. The adsorption of lead ions was an endothermic process since binding strength increased with temperature. The effect of alkali metal ions ($Ca^{2+}$ and $Mg^{2+}$) on lead sorption capacity was negligible and most adsorption process was completed in 30min. The uptake capacity of other metals such as, copper, mercury, strontium, and cesium ions using alginic acid was also investigated.

  • PDF

Analysis of Lead Ions in a Waste Solution Using Infrared Photo-Diode Electrode

  • Ly, Suw-Young;Lee, Hyun-Kuy;Kwak, Kyu-Ju;Ko, Jun-Seok;Lee, Jeong-Jae;Cho, Jin-Hee;Kim, Ki-Hong;Kim, Min-Seok;Lee, So-Jung
    • Toxicological Research
    • /
    • v.24 no.3
    • /
    • pp.227-233
    • /
    • 2008
  • To detect lead ions using electrochemical voltammetric analysis, Infrared Photo-Diode Electrode(IPDE) was applied via cyclic and square wave stripping voltammetry. Lead ions were deposited at 0.5 V(versus Ag/AgCl) accumulation potential. Instrumental measurements systems were made based on a simple and compact detection system. The stripping voltammetric and cyclic voltammetric optimal parameters were searched. The results yielded a cyclic range of $40{\sim}240mgl^{-1}$ Pb(II) and a square wave stripping working range of $0.5{\sim}5.00mgl^{-1}$ Pb(II). The relative standard deviation at 2 and 4 $mgl^{-1}$ Pb(II) was 0.04% and 0.02%(n=15), respectively, using the stripping voltammetric conditions. The detection limit was found to be 0.05 $mgl^{-1}$ with a 40 sec preconcentration time. Analytical interference ions were also evaluated. The proposed method was applied to determine lead ions in various samples.