• 제목/요약/키워드: Lead Error

검색결과 534건 처리시간 0.026초

IDENTIFICATION OF HUMAN-INDUCED INITIATING EVENTS IN THE LOW POWER AND SHUTDOWN OPERATION USING THE COMMISSION ERROR SEARCH AND ASSESSMENT METHOD

  • KIM, YONGCHAN;KIM, JONGHYUN
    • Nuclear Engineering and Technology
    • /
    • 제47권2호
    • /
    • pp.187-195
    • /
    • 2015
  • Human-induced initiating events, also called Category B actions in human reliability analysis, are operator actions that may lead directly to initiating events. Most conventional probabilistic safety analyses typically assume that the frequency of initiating events also includes the probability of human-induced initiating events. However, some regulatory documents require Category B actions to be specifically analyzed and quantified in probabilistic safety analysis. An explicit modeling of Category B actions could also potentially lead to important insights into human performance in terms of safety. However, there is no standard procedure to identify Category B actions. This paper describes a systematic procedure to identify Category B actions for low power and shutdown conditions. The procedure includes several steps to determine operator actions that may lead to initiating events in the low power and shutdown stages. These steps are the selection of initiating events, the selection of systems or components, the screening of unlikely operating actions, and the quantification of initiating events. The procedure also provides the detailed instruction for each step, such as operator's action, information required, screening rules, and the outputs. Finally, the applicability of the suggested approach is also investigated by application to a plant example.

Integrated Simulation Modeling of Business, Maintenance and Production Systems for Concurrent Improvement of Lead Time, Cost and Production Rate

  • Paknafs, Bahman;Azadeh, Ali
    • Industrial Engineering and Management Systems
    • /
    • 제15권4호
    • /
    • pp.403-431
    • /
    • 2016
  • The objective of this study is to integrate the business, maintenance and production processes of a manufacturing system by incorporating errors. First, the required functions are estimated according to the historical data. The system activities are simulated by Visual SLAM software and the required outputs are obtained. Several outputs including lead times in different dimensions, total cost and production rates are computed through simulation. Finally, data envelopment analysis (DEA) is utilized in order to select the best option between the defined scenarios due to the multi-criteria feature of the problem. This is the first study in which the lead times, cost and production rates are simultaneously considered in the integrated system imposed of business, maintenance and production processes by incorporating errors. In the current study, the major bottlenecks of the system being studied are identified and suggested different strategies to improve the system and make the best decision.

Design of Robust Resonance Suppression Controller in Parameter Variation for Speed Control of Parallel Connected Dual SPMSMs Fed by a Single Inverter

  • Yun, Chul;Jang, Tae-Sung;Cho, Nae-Soo;Yoon, Byung-Keun;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1908-1916
    • /
    • 2018
  • This paper proposes a controller design method for suppressing the resonance generated in the slave motor in the middle and low speed operation range, according to the load and parameter differences between two motors, during parallel operation using the master and slave method that controls two surface permanent magnet synchronous motors connected in parallel by a single inverter. The proposed resonance suppression controller is directly obtained by analyzing the resonance characteristics, using the lead controller method. Therefore, it is possible to fundamentally reduce trial and error to set the controller gain. In addition, because the proposed resonance suppression controller was designed as a lead controller, the stability region of the system increased owing to the added zero point, making the system robust with respect to parametric variations. Simulations and experiments confirmed the usefulness of the proposed method and the system's robustness with respect to parametric variations.

Fault-Tolerant Controller Design for Vehicles Platooning

  • Yoon, Gyeong-Hwan;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1853-1856
    • /
    • 2003
  • This paper considers the problem of longitudinal control of a platoon of automotive vehicles on a straight lane of a highway and proposes control laws in the event of loss of communication between the lead vehicle and the other vehicles in the platoon. Since safety plays a key role in the development of an Automated Highway System, fault-tolerant control is vital. In this paper, we develop a control algorithm in vehicle platooning and prove that this control algorithm is stable for certain class of faults such as parameter uncertainties. The performance of the controller is demonstrated through a series of simulations incorporating various vehicles and AHS faults. Results of simulation shows that the vehicles have good performance in spite of simple automotive and AHS failure, such as actuator failure,that is to say, engine input failure, communication failure between lead vehicle and the another vehicles.

  • PDF

공장 자동화를 위한 공구관리 시스템 (Tool management system for factory automation)

  • 김동훈;김선호;이춘식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.348-352
    • /
    • 1992
  • At present, the manufacturing industry is in a process of great change of circumstances like meeting demands to involve a great variety of types and shorter product life and thus more flexible manufacturing. These changes cause the larger number of different tools and frequent tool changes, which lead to the considerable losses in productive time and the high amount of capital tied up in the tool area. In our country, for the most part, the individual tool are still being presetted according to a data sheet and the measured values are entered, output in a list manually or via punched tapes. This usually takes a considerable amount time and lead to a high error rate. This paper describes a computer controlled tool data management system combined with the bar code tool identification labeled on cutting tools.

  • PDF

Nonlinear identification of Bouc-Wen hysteretic parameters using improved experience-based learning algorithm

  • Luo, Weili;Zheng, Tongyi;Tong, Huawei;Zhou, Yun;Lu, Zhongrong
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.101-114
    • /
    • 2020
  • In this paper, an improved experience-based learning algorithm (EBL), termed as IEBL, is proposed to solve the nonlinear hysteretic parameter identification problem with Bouc-Wen model. A quasi-opposition-based learning mechanism and new updating equations are introduced to improve both the exploration and exploitation abilities of the algorithm. Numerical studies on a single-degree-of-freedom system without/with viscous damping are conducted to investigate the efficiency and robustness of the proposed algorithm. A laboratory test of seven lead-filled steel tube dampers is presented and their hysteretic parameters are also successfully identified with normalized mean square error values less than 2.97%. Both numerical and laboratory results confirm that, in comparison with EBL, CMFOA, SSA, and Jaya, the IEBL is superior in nonlinear hysteretic parameter identification in terms of convergence and accuracy even under measurement noise.

리드용 와이어의 Von Mises 응력 최소화를 위한 최적설계 (The Optimum Design for Minimizing von Mises Stress of Lead Wire)

  • 박창형;조성진;한승철;김진호
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.119-126
    • /
    • 2017
  • High-precision wire is one of the most important components of lead production. However, no studies have been performed on the dimensional tolerance of these wires, and their capabilities have been deduced through trial and error. Therefore, PIANO, a commercial PIDO tool, was used to systematically determine the optimal parameters for stress minimization. The values obtained from the optimum design were modeled and analyzed using LS-Dyna, a finite element analysis program. Maximum stress was reduced by about 10% compared to its initial values, and the wire now satisfies dimensional tolerance ($10{\mu}m$).

SIL 기반 근접장 기록 시스템의 간극 제어를 위한 최적화된 PID 제어 알고리즘 성능평가 (Air-Gap Control Using Optimal PID Controller for SIL-Based Near-Field Recording System)

  • 신원호;김중곤;박노철;양현석;박영필;박경수
    • 정보저장시스템학회논문집
    • /
    • 제5권1호
    • /
    • pp.41-46
    • /
    • 2009
  • In SIL-based NFR servo systems, the residual error and the overshoot that are occurred in the process of the modes-witching servo which consists of approach, gap-control modes, and safety mode are reduced by using PID controller. However, the design method of conventional PID controller is not sufficient for the stable air gap control system. Therefore, the optimal PID controller using LQR manner is more useful to find the designed parameters of PID controller. In this paper, we show that the performance of the optimal PID controller is better than that of the lead-lag controller.

  • PDF

박판성형에서의 CAE - 현황과 전망 (CAE of Sheet Metal Forming Processes - The Present Status and The Future Prospect)

  • 양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 박판성형기술의 진보
    • /
    • pp.25-36
    • /
    • 1994
  • The sheet metal forming process is one of the most important manufacturing processes in the modern industry. From the view point of mechanics involved, it is very difficult to predict whether a newly designed sheet metal part can be formed without defects such as fracture, wrinkling and surface unevenness, etc. In order to reduce the effort taken in the trial-and-error process and to control the process effectively, a systematic method for process modeling is to required. The aim of sheet forming simulation through the process modeling is to reduce the lead time for die disign and manufacture by process modeling is to reduce the lead time for die design and manufacture by means of investigating the deformation mechanics and the mutual interaction between the process parameters. In this paper, the necessity, the present status, and the future technology about CAE of sheet forming simulation have been discussed.

Airline In-flight Meal Demand Forecasting with Neural Networks and Time Series Models

  • Lee, Young-Chan
    • 한국정보시스템학회:학술대회논문집
    • /
    • 한국정보시스템학회 2000년도 추계학술대회
    • /
    • pp.36-44
    • /
    • 2000
  • The purpose of this study is to introduce a more efficient forecasting technique, which could help result the reduction of cost in removing the waste of airline in-flight meals. We will use a neural network approach known to many researchers as the “Outstanding Forecasting Technique”. We employed a multi-layer perceptron neural network using a backpropagation algorithm. We also suggested using other related information to improve the forecasting performances of neural networks. We divided the data into three sets, which are training data set, cross validation data set, and test data set. Time lag variables are still employed in our model according to the general view of time series forecasting. We measured the accuracy of our model by “Mean Square Error”(MSE). The suggested model proved most excellent in serving economy class in-flight meals. Forecasting the exact amount of meals needed for each airline could reduce the waste of meals and therefore, lead to the reduction of cost. Better yet, it could enhance the cost competition of each airline, keep the schedules on time, and lead to better service.

  • PDF