• Title/Summary/Keyword: Leaching material

Search Result 232, Processing Time 0.018 seconds

Environmental Assessment of Vitrified Mine Tailing Aggregate Using Various Leaching Methods (고농도 중금속 함유 광미를 이용한 유리화 처리 골재의 장기 용출특성에 따른 환경안전성 평가)

  • Lee, Sang-Woo;Chun, Sa-Ho;Lee, Ki-Kang;Lee, Sanghoon
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2007
  • Vitrified aggregates obtained by using mine tailings were evaluated using various leaching methods to assess their environmental safety. The leaching tests in this study include continuous batch leaching, Dutch availability leaching, pH-stat and tank diffusion test as well as TCLP (Toxicity Characteristic Leaching Procedure), which is commonly adopted. Vitrification technique has successfully been applied treating some solid wastes containing high level of heavy metals, such as EAF (Electric Arc Furnace) dust and mine tailings. The potentially most leachable element among trace metals was As and theoretically about 7% of total concentrations in the aggregate can be released under extreme condition. Zinc was leached about 4% and the other trace metals including Cd, Cr and Pb were hardly released from the vitrified mine tailing aggregate.

Efficient Selective Recovery of Lithium from Waste LiFePO4 Cathode Materials using Low Concentration Sulfuric Solution and 2-step Leaching Method (저농도 황산 용액 및 2-스텝 침출 방법을 이용한 폐LiFePO4 양극재로부터 효율적인 리튬의 선택적 회수)

  • Dae-Weon Kim;Hee-Seon Kim
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.87-94
    • /
    • 2023
  • The recovery of valuable metals from waste lithium-based secondary batteries is very important in terms of efficiently utilizing earth's limited number of resources. Currently, the cathode material of a LiFePO4 battery, a type of battery which is widely used in automobiles, contains approximately 5% lithium. After use, the lithium in these batteries can be used again as a raw material for new batteries through lithium recycling. In this study, low-concentration sulfuric acid, a commonly used type of inorganic acid, was used to selectively leach the lithium contained in a waste LiFePO4 cathode material powder. In addition, in order to compare and analyze the leaching efficiency and separation efficiency of each component, the optimalleaching conditions were derived by applying a two-step leaching process with pulp density being used as a variable during leaching. When leaching with pulp density as a variable, it was confirmed that at a pulp density of 200 g/L, the separation efficiency was approximately 200 times higher than at other pulp densities because the iron and phosphorus components were hardly leached at this pulp density. Accordingly, the pulp density of 200 g/L was used tooptimize the leaching conditions for the selective leaching and recovery of lithium.

Recovery of High Purity TiO2 Powder from Ilmenite by Hydrochloric Acid Leaching (타이타늄 철석으로부터 염산 침출에 의한 고순도 이산화 타이타늄 회수)

  • Ahn, Hyeong Hun;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.68-73
    • /
    • 2019
  • Ilmenite is one of the principal ores for the production of titanium dioxide. To produce titanium dioxide with purity higher than 99.9% from ilmenite, Ti(IV) should be separated from the dissolved impurities such as Fe(III), Si(IV), and Mn(II) present in ilmenite. In this work, a hydrometallurgical process was investigated to recover pure titanium dioxide from ilmenite by HCl leaching followed by separation and hydrolysis of Ti(IV). An optimum leaching condition was obtained by investigating the effect of HCl concentration, pulp density, and leaching time on the leaching percentage of Ti(IV), Fe(III), Si(IV), and Mn(II). Ammonium hydroxide and sodium hydroxide solutions were employed as neutralizing agents to hydrolyze Ti(IV) from the stripping solution of Ti(IV). Titanium dioxide of the anatase phase was obtained by calcination of the hydrolyzed precipitates with $NH_4OH$ solution. A hydrometallurgical process can be developed to produce pure $TiO_2$ powders from ilmenite.

Chemical Leaching of Silver from Diverse Resources (다양한 자원으로부터 은의 화학적 침출)

  • Xing, Weidong;Lee, Manseung
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.3-10
    • /
    • 2017
  • The special properties of silver are often indispensable in the manufacture of advanced materials. Therefore, it is of importance to develop a process to recover silver which is necessary for the production of advanced materials from diverse resources. In this manuscript, the developed processes for the leaching of silver from diverse resources are reviewed. For this purpose, the advantages and disadvantages of using some inorganic acids (nitric and sulfuric acid) and their mixture with other oxidizing agents (ozone, oxygen, hydrogen peroxide and ferric ion) were investigated. Moreover, the leaching of silver with thiourea and thiosulfate was compared over those by inorganic acids in terms of environmental effect.

Strength and Leaching Characteristics of Water Sludge-added Lightweight Soil Considering Reinforcing Material and Layer (정수슬러지를 혼합한 경량토의 보강에 따른 강도 및 용출 특성 분석)

  • Yun, Daeho;Lee, Byunghun;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.75-84
    • /
    • 2012
  • In this paper, strength and leaching characteristics of water sludge-added lightweight soils(WALS) considering reinforcing materials(waste fishing net, glue treated waste fishing net and geogrid) and layer(1 or 2 layer) were investigated using unconfined compression test and leaching test. Several specimens of water sludge-added lightweight soil consisted of water sludge, cement, and bottom ash were prepared according to flowability. Reinforcing material added into these specimens were waste fishing net and geogrid. A glue treated waste fishing net was also added in order to increase interlocking between soil mixture and waste fishing net. Strength increased in the order of WALS reinforced by waste fishing net, glue treated waste fishing net, and geogrid. Strength of specimen with double layer-reinforcing material was greater than that of specimen with single layer reinforcing material. Leaching result of WALS was also satisfied with standard of ministry of environment.

Environmental Impact Review and Improvement of Durability of Silicasol-cement Grout Material (실리카졸 약액의 환경영향성 검토 및 내구증진방안)

  • Lee, Byungho;Kim, Younghun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.13-18
    • /
    • 2010
  • This study was made on the fact that the environmental impact and durability of the recently developed alkali silicasol chemical grout material. The grout material used for this study was designed to understand its environmental impact and durability through the SEM, chemical resistance test, leaching test, permeability test. In order to compare with the engineering characteristics regarding alkali silicasol grout material and sodium silicate grout material. As a result of SEM, the surface and internal tissues of alkali silicasol grout material could be identified to be denser than those of sodium silicate. As a result of leaching test the adaptability was identified as grout material as it had proved to be an ecological material owing to the total amount of the element to be leached being extremely little. As a result of permeability test it is judged that it is possible to apply the silicasol to the site in the place requiring the water cut-off as the silicasol.

Improvement in The Fuel Characteristics of Empty Fruit Bunch by Leaching and Wet Torrefaction (용탈처리와 습식 반탄화에 의한 Empty Fruit Bunch의 연료적 특성 향상)

  • Gong, Sung-Ho;Lee, Hyoung-Woo;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.360-369
    • /
    • 2016
  • In this study, sequential leaching and wet torrefaction were performed to improve the fuel characteristics of empty fruit bunch (EFB). Leaching was carried out at $25{\sim}90^{\circ}C$ for 5~30 min. The highest ash removal efficiency of 55.99% was achieved when leaching was performed at $90^{\circ}C$ for 10 min. The ash removal efficiency was dependent more on leaching temperature than time. Wet torrefaction was carried out at $180{\sim}200^{\circ}C$ for 5~40 min, following the leaching. Most of the inorganic compounds were removed at removal efficiencies of 41.05~63.58% during sequential leaching and wet torrefaction, while silica remained in the biomass. Chloride, calcium, magnesium, and phosphorus showed more than 80% removal efficiencies. The calorific value of EFB increased to 7.96% (4730 kcal/kg) in comparison to the raw material (4390 kcal/kg) when wet torrefaction was performed at $200^{\circ}C$ for 40 min following leaching.

Solidification and Leaching Characteristics of Cyclone Ash from Industrial Incineration Plant

  • Lee, Dong-Choon;Kim, Young-Ju
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_2
    • /
    • pp.89-95
    • /
    • 2001
  • The solidification and leaching characteristics of cyclone ash collected from an industrial incineration plant were investigated. Cement and calcium hydroxide were used as the solidifying materials. The leaching characteristics of the solidified cyclone ash were found to vary depending on both the quantitative and the qualitative aspects of the solidifying materials. Except for copper and lead, all the heavy metal ions in the leachate of the solidified material composed of 10~20 % cement or 10~20 % calcium hydroxide were found to be within their standard limit. Moreover, all the heavy metal ions were also observed to be within satisfactory limits in the leachate obtained from the solidified material composed of 30 % cement or 30 % calcium hydroxide. Therefore, to satisfy the standard compressive intensity and permissible limits of heavy metal ions leached from solidified material, it would appear that a 30 % proportion of either additive in the solidification product can meet the required standard for the leachate. The cost of solidifying cyclone ash per ton for ash-30 % cement and ash-30 % lime was calculated as 26,750 and 26,070 won, respectively. Accordingly, significant reduction in the waste toxicity and mobility as well as an improvement in the engineering properties of the solidified products were successfully achieved.

  • PDF

Reduction of Fluorine, Boron and Heavy Metals Leaching from Coal Ash by Adding Fixation Chemicals

  • Iwasaki, Makoto;Inoue, Kaori;Ikeshima, Kazuya;Ishizuka, Tadashi
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.105-110
    • /
    • 2006
  • In order to utilize coal fly ash (hereafter : coal ash ) discharged from coal boiler as a material for civil engineering usage such as snow melter or soil improver, we have to prevent leaching hazardous elements such as fluorine boron and heavy metals from the coal ash because the leaching concentrations of some elements in the ash exceed the Japanese standards for environmental soil quality. Through the laboratory experiments and mill trials we confirmed that the leaching concentrations of fluorine, boron and heavy metals were maintained below their environmental standards by mixing with fixation chemicals and curing for a short time.

  • PDF

Bioleaching Behavior of Cu and Co by Aspergillus Niger Strains from Molasses Culture (당밀배지에서 Aspergillus niger 균주에 의한 구리 및 코발트의 미생물 침출 거동)

  • Ahn, Hyo-Jin;Ahn, Jae-Woo;Ryu, Seong-Hyung
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.64-69
    • /
    • 2014
  • For the recovery of Co and Cu, bioleaching behavior of Co, Cu, Fe, Mg, Al by Aspergillus niger culture from the molasses growth medium was investigated. Series of leaching tests have been conducted by varying Aspergillus niger's type, molasses concentration in the growth medium, pulp density and reaction time. The results showed that increase of the molasses concentration in the growth medium from 1% to 4% increased the leaching percentage of Co and Cu and the optimal molesses concentration was found to be 4% in the growth medium. Maxinum 90% of Co and 70% of Cu were dissolved from the leaching test at the 10 g/L pulp density, 4 % of molasses concentration in the growth medium after 21 days by Aspergillus niger KCTC 6985. But in case of using Aspergillus niger KCTC 6144, the maxium leaching percentage of Co and Cu was reached 90% respectively at a pulp density 5 g/L and 4% of molasses concentration.