• Title/Summary/Keyword: Leaching kinetics

Search Result 32, Processing Time 0.024 seconds

Fractal kinetic characteristics of uranium leaching from low permeability uranium-bearing sandstone

  • Zeng, Sheng;Shen, Yuan;Sun, Bing;Tan, Kaixuan;Zhang, Shuwen;Ye, Wenhao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1175-1184
    • /
    • 2022
  • The pore structure of uranium-bearing sandstone is one of the critical factors that affect the uranium leaching performance. In this article, uranium-bearing sandstone from the Yili Basin, Xinjiang, China, was taken as the research object. The fractal characteristics of the pore structure of the uranium-bearing sandstone were studied using mercury intrusion experiments and fractal theory, and the fractal dimension of the uranium-bearing sandstone was calculated. In addition, the effect of the fractal characteristics of the pore structure of the uranium-bearing sandstone on the uranium leaching kinetics was studied. Then, the kinetics was analyzed using a shrinking nuclear model, and it was determined that the rate of uranium leaching is mainly controlled by the diffusion reaction, and the dissolution rate constant (K) is linearly related to the pore specific surface fractal dimension (DS) and the pore volume fractal dimension (DV). Eventually, fractal kinetic models for predicting the in-situ leaching kinetics were established using the unreacted shrinking core model, and the linear relationship between the fractal dimension of the sample's pore structure and the dissolution rate during the leaching was fitted.

Comparison of Bioleaching Kinetics of Spent Catalyst by Adapted and Unadapted Iron & Sulfur Oxidizing Bacteria - Effect of Pulp Density; Particle Size; Temperature

  • Pradhan, Debabrata;Kim, Dong-Jin;Ahn, Jong-Gwan;Gahan, Chandra Sekhar;Chung, Hun-Saeng;Lee, Seoung-Won
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.956-966
    • /
    • 2011
  • Bioleaching studies of metals from a spent catalyst were conducted using both adapted and unadapted bacterial cultures. The bacterium used in this experiment was Acidithiobacillus ferrooxidans. A comparison of the kinetics of leaching was made between the two cultures by varying the leaching parameters, including the pulp density, particle size and temperature. Both cultures showed similar effects with respect to the above parameters, but the leaching rates of all metals were higher with the adapted compared to the unadapted bacterial cultures. The leaching reactions were continued for 240 h in the case of the unadapted bacterial culture, but only for 40 h in the case of the adapted bacterial culture. The leaching reactions followed first order kinetics. In addition, the kinetics of leaching was concluded to be a diffusion control model; therefore, the product layers were impervious.

Leaching Kinetics of Yttrium Extraction from Coal Fly Ash using Sulfuric Acid

  • Kim, Jae-kwan;Park, Seok-un;Hong, Jun-seok;Shin, Dong-ik;Jeong, Jae-hyeok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • Leaching kinetics for extracting yttrium from the coal fly ash was investigated in the presence of sulfuric acid during extraction. The leaching kinetics of yttrium were conducted at reactant densities of 5~1,000 g coal fly ash per L of $1.0{\sim}10.0N\;H_2SO_4$, agitation speed of 250 rpm and temperature ranging from 30 to $90^{\circ}C$. As a result, the leaching kinetic model was determined in a two-step model based on the shrinking core model with spherical particles. The first step was proceeded by chemical reaction at ash surface, and the second step was proceeded by ash layer diffusion because the leaching conversion of yttrium by the first chemical reaction increases with increased the time irrelevant to the temperature whereas it increases with increased the leaching temperature. The activation energy of the first chemical leaching step was determined to be $1.163kJmol^{-1}$. After the first chemical reaction, the activation energy of ash layer diffusion leaching was derived to be $41.540kJmol^{-1}$. The optimum conditions for leaching the yttrium metal of 60 % were found to be the slurry density of 250 g fly ash per L of $H_2SO_4$, solvent concentration of $2.0N\;H_2SO_4$, second step leaching of temperatures of $30^{\circ}C$ for 3 hours and then $90^{\circ}C$ for 3 hours at agitation rate of 250 rpm.

Leaching of Rare Metals from Spent Petroleum Catalysts by Organic Acid Solution (석유화학공정 폐촉매에 함유된 희유금속의 유기산 침출)

  • Le, Minh Nhan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.36-45
    • /
    • 2019
  • The spent petroleum catalysts contain rare metals such as vanadium, nickel, molybdenum, and cobalt. Therefore, the leaching of these rare metals from spent petroleum catalysts by organic acid was investigated in the present study. The leaching efficiency of metals by organic acid was in the following order: oxalic acid > tartaric acid > citric acid > maleic acid > ascorbic acid. Among the organic acids employed in this work, oxalic acid can be considered to be superior to the other acids in terms of metals leaching efficiency. The effect of several leaching conditions such as temperature, acid concentration, pulp density, stirring speed, and reaction time on the leaching of metals was investigated. Vanadium and molybdenum were selectively dissolved by oxalic acid from the spent catalysts. The leaching kinetics of vanadium by oxalic acid was also investigated. An activation energy of 8.76 kJ/mol indicated that the leaching kinetics of vanadium by oxalic acid solution was controlled by mass transfer.

Enhanced extraction of copper and nickel based on the Egyptian Abu Swayeil copper ore

  • Somia T. Mohamed;Abeer A. Emam;Wael M. Fathy;Amany R. Salem;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.63-78
    • /
    • 2024
  • The continuous increasing of the global demand of copper and nickel metals raises the interest in developing alternative technologies to produce them from copper sulfide ore. Also, in line with Egypt's vision 2030 for achieving the sustainable socioeconomic development which aims at developing alternative and eco-friendly technologies for processing the Egyptian ores to produce these strategic products instead of its importing. These metals enhance the advanced electrical and electronic industries. The current work aims at investigating the recovery of copper and nickel from Abu Swayeil copper ore using pug leaching technique by sulfuric acid. The factors affecting the pug leaching process including the sulfuric acid concentration, leaching time and temperature have been investigated. The copper ore sample was characterized chemically using X-ray fluorescence (XRF) and scanning electron microscope (SEM-EDX). A response surface methodology develops a quadratic model that expects the nickel and copper leaching effectiveness as a function of three controlling factors involved in the procedure of leaching was also investigated. The obtained results showed that the maximum dissolution efficiency of Ni and Cu are 99.06 % and 95.30%, respectively which was obtained at the following conditions: 15 % H2SO4 acid concentration for 6 hr. at 250 ℃. The dissolution kinetics of nickel and copper that were examined according to heterogeneous model, indicated that the dissolution rates were controlled by surface chemical process during the pug leaching. The activation energy of copper and nickel dissolution were 26.79 kJ.mol-1 and 38.078 kJ.mol-1 respectively; and the surface chemical was proposed as the leaching rate-controlling step.

The Effects of Kinetics on the Leaching Behavior of Heavy Metals in Tailings-Water Interaction (광미-물 상호반응에서 반응시간이 중금속 용출에 미치는 영향)

  • Kang Min-Ju;Lee Pyeong-Koo;Kim Sang-Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.23-36
    • /
    • 2006
  • Experimental leaching of tailings was performed as a function of times (1, 2, 4, 7, 14, 21 and 30 days) in the laboratory using reaction solutions equilibrated to three different pH set-points (pHs 1,3 and 5). The initial pHs of 5 and 3 stabilized at either 4.6-6.1 or 2.8-3.5 in 2 days and decrease gradually with time afterwards. The results of the leaching tests indicate that the significant increase in the sulfate concentrations and in acidity after 7 days of leaching results from the oxidation of sulfide minerals. There were no significant variations in the extractable Pb found in the leach solutions of pH 5 and 3 within the reaction time (1-30 days), while Zn, Cd and Cu concentrations tend to significantly increase with time. In tailings leaching at an initial pH=1, two trends were observed: i) The 'Zn-type' (Zn, Cd and Cu), with increasing concentrations between days 1 and 30, corresponding to the expected trend when continuous dissolution is the dominant process, ii) the 'Pb-type' (Pb), with decreasing concentrations over time, suggesting rapid dissolution of a Pb source followed by the precipitation of 'anglesite' in relation to the large increase in dissolved sulfates. The high sulfate concentrations were coupled with high concentrations of released Fe, Zn and Cd. Release of Zn and Cd and acidity from these leaching experiments can potentially pose adverse impact to surface and groundwater qualities in the surrounding environment. The kinetic problems could be the important factor which leads to increasing concentrations of trace metals in the runoff water.

Direct acid Leaching of zinc from Marmatite ores 2 Kinetics of Autoclave Leaching of Synthetic ${\beta}$-ZnS (Marmatite 鑛의 直接酸浸出에 關한 硏究 (第2報) ${\beta}$-ZnS Autoclave Leaching의 反應機構에 關한 硏究)

  • Kim Jae Won
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.33-37
    • /
    • 1967
  • The influence of impurities contained in Marmatite ores on leaching of zinc was investigated. The zinc sulfide having the same crystal structure of natural Sphalerite was prepared by heating the zinc sulfide chemically precipitated, at $650^{\circ}C$ in nitrogen atmosphere. The activation energy of the sample was 25.8 kcal per mole in the leach test when oxygen partial pressure was 5 atm. and the value was exceedingly high compared to that obtained in Marmatite ores. Synthetic zinc sulfides added with small amount of each impurities were treated in same procedure. As a result, it was found that the leaching velocity was accelerated sharply when about 1 percent of $Cu^{++}$ was blended to the sample. Larger amount of iron has also same effect but the effect was minor compared to the copper. The other impurities indicated no appreciable catalytic action.

  • PDF

Sulfuric Acid Leaching of Manganese from Ferromanganese Dust (황산에 의한 페로망간 집진분 중의 망간 침출)

  • Park, Suji;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.24-30
    • /
    • 2015
  • The sulfuric acid leaching of ferromanganese dust was studied. The effect of acid concentration, reaction temperature, stirring rate, particle size and solid to liquid ratio on Mn and Fe extraction in the solution were investigated. It was found that the leaching rate of Mn and Fe increased with increasing reaction temperature and sulfuric acid concentration. Examination of data by shrinking core model suggested that the leaching rate is controlled by chemical reaction at the surface of particle. The activation energy for the leaching reaction of Mn and Fe were calculated to be 79.55 kJ/mol and 77.48 kJ/mol, respectively.

Leaching Kinetics of Praseodymium in Sulfuric Acid of Rare Earth Elements (REE) Slag Concentrated by Pyrometallurgy from Magnetite Ore

  • Kim, Chul-Joo;Yoon, Ho-Sung;Chung, Kyung Woo;Lee, Jin-Young;Kim, Sung-Don;Shin, Shun Myung;Kim, Hyung-Seop;Cho, Jong-Tae;Kim, Ji-Hye;Lee, Eun-Ji;Lee, Se-Il;Yoo, Seung-Joon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.46-52
    • /
    • 2015
  • A leaching kinetics was conducted for the purpose of recovery of praseodymium in sulfuric acid ($H_2SO_4$) from REE slag concentrated by the smelting reduction process in an arc furnace as a reactant. The concentration of $H_2SO_4$ was fixed at an excess ratio under the condition of slurry density of 1.500 g slag/L, 0.3 mol $H_2SO_4$, and the effect of temperatures was investigated under the condition of 30 to $80^{\circ}C$. As a result, praseodymium oxide ($Pr_6O_{11}$) existing in the slag was completely converted into praseodymium sulfate ($Pr_2(SO_4)_3{\cdot}8H_2O$) after the leaching of 5 h. On the basis of the shrinking core model with a shape of sphere, the first leaching reaction was determined by chemical reaction mechanism. Generally, the solubility of pure REEs decreases with the increase of leaching temperatures in sulfuric acid, but REE slag was oppositely increased with increasing temperatures. It occurs because the ash layer included in the slag is affected as a resistance against the leaching. By using the Arrhenius expression, the apparent activation energy of the first chemical reaction was determined to be $9.195kJmol^{-1}$. In the second stage, the leaching rate is determined by the ash layer diffusion mechanism. The apparent activation energy of the second ash layer diffusion was determined to be $19.106kJmol^{-1}$. These relative low activation energy values were obtained by the existence of unreacted ash layer in the REE slag.

Characteristics of roadside soils and effects of pH and Time on their reaching behaviors of Pb, Zn, Cd and Mn (도로변 토양의 오염 특성과 Pb, Zn, Cd 및 Mn의 침출거동에 미치는 pH와 반응시간의 영향)

  • 이평구
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.53-62
    • /
    • 1999
  • The possibility of heavy metal pollution by contaminated roadside soils was studied under controlled conditions. The soil samples from roadside and those from a retention pond consisting of settling particles were characterized by the XRD analyses and the sequential extraction experiments. Characterization by sequential extraction, for roadside soil indicates elevate total concentrations of heavy metals. The leaching behavior of the samples under different pH and time conditions were also studied. Differences between both types of samples result mainly from the buffering effect of carbonates, present in roadside soils and lacking from settling particles. Acid leaching of the settling particles is equivalent to the sum of FI+FII+FIII, while the amounts leached from roadside soil are lower probably from kinetic reasons. The buffering effects of carbonates were found to greatly delay the onset of the leaching reactions and the extent of dissolution in most metals except for Ca and Mn. The study of leaching kinetics at pH of 6.5 and 5 showed that Cd and Zn reached the maximum possible concentration within 3 days, while Pb did not show any sign of dissolution at both ph values. The absolute amounts of dissolved Cd and Zn increased by 7 to 9 times by decreasing the pH from 6.5 to 5, indicating slightly acidified rain may result in significant metal dissolution. As deduced from both sequential extraction and leaching experiments, the relative mobility of heavy metals is found to be : Mn=Cd>Zn>>Pb>Fe, in spite of large differences in heavy metal contents and localizations.

  • PDF