• Title/Summary/Keyword: Leach liquor

Search Result 24, Processing Time 0.021 seconds

A Selective Recovery Condition of Vanadium from Fly Ash Leach Liquor by UV-Spectrophotometry (UV 분광법을 이용한 중유회 용출액으로부터 바나듐의 선택적 회수 조건)

  • Kim, Da-Bin;Na, Su-Bin;Han, Hyea-Chul
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.65-72
    • /
    • 2016
  • We studied a selective recovery condition of vanadium (V) from FALL (Fly Ash Leach Liquor) produced at a fossil fuel power station using heavy oil. By applying a spectroscopy to quantify the V in a sample, we identified a concentration range V interfered by on presence of metals such as Ni, Fe Also, the optimal vanadium precipitation rate according to the amount of 5.0M $NH_3$ loaded to the sample, solution pH and stirring time. As a result of the experiment, the maximum selective recovery ratio of V was achieved to be higher than 91.5% when the stirring duration was less than 1 minute at pH 7.0, and $25^{\circ}C$.

Preparation of Aluminum Hydroxide by Processing of Aluminum Dross

  • Park, Hyungkyu;Lee, Hooin;Kim, Joonsoo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.202-208
    • /
    • 2001
  • Aluminum dross should be recycled in consideration of characteristics of the dross and its reutilization after processing. In this study, aluminum dross generated in the domestic secondary aluminum industry was processed to use it as raw material for producing aluminum hydroxide. Sample dross was classified according to its size. The dross smaller than 1mm was leached with sodium hydroxide solution to extract the remaining aluminum from the dross into the solution, and then aluminum hydroxide precipitate was recovered from the leach liquor. Purity of the obtained aluminum hydroxide was above 98 percent, and particle size of the sample was in range of 3-39${\mu}{\textrm}{m}$. From the result, it was suggested that this process could be applicable to recycling of aluminum dross.

  • PDF

Determination of Ni in Fly Ash Leach Liquor by Spectrophotometric Method (분광학(分光學)적 방법(方法)에 의한 중유회(重油灰) 용출액(溶出液) 중(中)의 Ni 정량(定量)에 관(關)한 기초(基礎) 연구(硏究))

  • Jo, Jung-Min;Han, Hyea-Chul
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.88-92
    • /
    • 2012
  • We tried to measure the fixed quantity of $Ni^{2+}$ion among the metals which were eluted by distilled water from the Fly Ash Leach Liquor(FALL) with a spectrophotometric method. In addition, we researched absorbance values which had different contained quantity of $V^{3+}$ion in contrast with $Ni^{2+}$ion ppm to find out the influence of the $V^{3+}$ion existed in the FALL on the spectrophotometric fixed quantity of $Ni^{2+}$ion. As a result, when $V^{3+}$ ion has below 50% of amount of $Ni^{2+}$ion, the fixed quantity of $Ni^{2+}$ion among the FALL was able to be confirmed by spectrophotometry.

Synthesis of $LiCoO_{2}$ Nanoparticles From Leach Liquor of Lithium Ion Battery Wastes by Flame Spray Pyrolysis

  • Lee Churl Kyoung;Chang Hankwon;Jang Hee Dong;Sohn Jeong-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.37-43
    • /
    • 2005
  • [ $LiCoO_{2}$ ] nanoparticles were synthesized from leach liquor of lithium ion battery waste using flame spray pyrolysis. Electrode Materials containing lithium and cobalt could be concentrated with thermal and mechanical treatment. After dissolution of used cathode materials of the lithium battery with nitric acid, the molar ratio of Li/Co in the leach liquor was adjusted at 1.0 by adding a fresh $LiNO_{3}$ solution. The nanoparticles synthesized by the flame spray pyrolysis showed clear crystallinity and were nearly spherical, and their average primary particle diameters ranged from 11 to 35 nm. The average particle diameter increased with an increase in the molar concentration of the precursor. Raising the maximum flame temperature by controlling the gas flow rates also led to an increase in the average diameter of the particles. The $LiCoO_{2}$ powder was proved to have good characteristics as cathode active materials in charge/discharge capacity and cyclic performance.

Characteristic of Leaching with Incineration Fly Ash of Industrial Solid Wastes (산업폐기물 소각장에서 발생된 소각비산회의 침출특성)

  • 양종규;김종화;서명교;고태규
    • Resources Recycling
    • /
    • v.8 no.1
    • /
    • pp.18-22
    • /
    • 1999
  • In order to utilize incineration fly ash of industrial wastes as resources, we present the recovery and separation of metals included in the fly ash by leaching with aqueous solution A great quantity of Cu, Pb, and Zn as well as a small amount oftoxic heavy metals are contained in the leach liquor of the fly ash, and the concentration of the ingredients of the fly ash depends on the industrial wastes which are fed into incinerators. In this paper, sequential Ieachiog operations are conducted using $H_2O$, $H_2SO_4$, $(NH_4)_2CO_3$ and NaOH as Icachants. Water soluble copper salt was leached by $H_2O$, Zn and Pb were separated by the NaOH leach liquor, and water insoluble copper was selectively leached as chelate ion with the $(NH_4)_2CO_3$ leach liquor of the third Ieaehant. Results show that the reduction percent of the fly ash in the leaching steps using $H_2O$, $H_2SO_4$, and $(NH_4)_2CO_3$ is 77%, and the other leaching procedures lose the weight of fly ash by above 60%.

  • PDF

Recovery of Palladium from a Mixture of Pt, Pd and Rh by Solvent Extraction

  • Kim, berly S. Svalstad;Kim, Nam-Soo;Kenneth N. Han
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.482-488
    • /
    • 2001
  • Platinum group metals (pgm) are useful to many industries such as chemical, dental and medical, petroleum, refining, electrical and electronic, and automotive. Researchers at the South Dakota School of Mines and Technology and PGM Recovery Ltd. have developed jointly an environmentally sound and metallurgically efficient process for extracting these metals from secondary sources. Once these metals have been dissolved in the leach liquor, the individual metals mainly platinum, palladium, and rhodium, should be separated in order to recover the individual metals with high purity. During this investigation, solvent extraction has been chosen as the method used to achieve the separation and extraction of platinum, palladium, and rhodium from the leach liquor. There were three solutions used throughout this procedure: 1) Synthetic solution (200 ppm Pt 80 ppm Pd 20 ppm Rh; 300 ppm Pt, 180 ppm Pd 50 ppm Rh), and 2) Auto catalyst leach liquors (100 ppm Pt, 30 ppm Pd, 20 ppm Rh). The solvents investigated included Lix 84(2-hydroxy-5-nonylacetonphenone oxime in a mixture with 5-dodecylsalicyloxime), Lix 84-I, ACORGA CLX-50 (diester of pyridine 3,5 dicarboxylic acid), and di-hexyl sulfide. The extraction values achieved using ACORGA CLX-50, Lix 84, and Lix 84-I were respectively Pt (25%, 0% 0%), Pd (100%, 99.8%, 95.3%), and Rh (99.1%, 35.5%, 4.25%). The stripping processes for the Lix 84, and Lix 84-I were proven to be more involved than others. The solutions were required to be simultaneously heated and stirred. The percentages acquired through these processes yielded unsatisfactory results. The stripping procedure for the ACORGA CLX-50 was easier to execute, yet the percentage recovered from this process was also unsatisfactory. Overall the di-hexyl sulfide has proved to be the most successful organic for this procedure. The average percent extracted for palladium was excellent with 99.9% - 100% with very little Platinum and rhodium extracted. The ability of stripping palladium in ammonia solution was also found to be excellent.

  • PDF

A Study on the Removal of Arsenic 1mm Closed-Mine Tailings by Acid-Leaching Process (산침출에 의한 광미중 비소성분의 제거에 관한 연구)

  • 오종기;이화영;김성규;이재령;박재구
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.21-31
    • /
    • 1998
  • A study on the acid leaching and precipitation has been conducted to remove arsenic from the closed-mine tailings. HCI and H$_2$SO$_4$were used as the leach liquor of arsenic and the tailing obtained from the Da-Duck Mine, which was already closed several decades ago, was also used as the source of arsenic. The effect of the concentration of acid, leaching time and the slurry density on the leaching efficiency of arsenic has been examined. In addition, pH controls and the addition of sodium sulfide were also attempted to remove the arsenic compound as the precipitation from the leachate. After 1 hr leaching by HCI, 40 to 86% of arsenic was leached out depending on the concentration of acid or the slurry density while 47 to 77% of it was leached out by $H_2$$SO_4$. The leaching of arsenic by both acids was almost accomplished within 10 min. and after that only a slight increase in leaching efficiency was observed with leaching time. When the leach liquor was used repeatedly for the leaching of arsenic, the concentration of arsenic in the leach liquor was found to increase continuously although the leaching efficiency was diminished. As far as the precipitation of arsenic in the leachate was concerned, more than 99% of arsenic could be precipitated through the addition of sodium sulfide as the precipitator while the pH controls resulted in the precipitation of up to 84%.

  • PDF

Solvent Extraction of Platinum Group Metals from the leach Liquor of Spent Automotive Catalyst (자동차(自動車) 폐촉매(廢觸媒)의 침출액(浸出液)으로부터 백금족(白金族) 금속(金屬)의 용매추출(溶媒抽出))

  • Kim, Mi-Ae;Lee, Jae-Chun;Kim, Chi-Kwon;Kim, Min-Seuk;Kim, Byung-Su;Yoo, Kyoung-Keun
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.3-10
    • /
    • 2006
  • The solvent extraction for the separation of platinum group metals from the leach liquor of spent automotive catalysts has been studied. Tri-n-butyl phosphate (TBP), tri-n-octylamine (TOA) and di-n-hexyl sulfide (DHS) were used as extractants and kerosene as a diluent. The extraction behavior of platinum, palladium and rhodium has been investigated as functions of different kinds of extractants and their concentrations. In addition, the extraction behavior of the major metal impurities such as cerium, lead, iron, magnesium and aluminum has been investigated. Platinum and palladium were extracted with TBP. And platinum, palladium and rhodium were extracted with TOA. Platinum was co-extracted with palladium into the organic phase by solvent extraction using SFI-6 of DHS extractant, but only palladium was selectively extracted with SFI-6R. The selective extraction of palladium with SFI-6R was found better than that with SFI-6, but the kinetics of extraction with SFI-6R was found poor in comparison to SFI-6. The metal impurities extracted simultaneously during the extraction of platinum group metals should be removed in scrubbing and stripping processes. A suitable process has been proposed for the separation of platinum group metals from the leach liquor of spent automotive catalysts. Initially palladium was extracted with SFI-6R, followed by the separation of platinum with TBP or TOA leaving rhodium in the raffinate.

Preparation of Aluminum Hydroxide by Recycling of Aluminum Dross (알루미늄드로스로부터 수산화알루미늄 제조)

  • 박형규;이호인;김준수
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.8-15
    • /
    • 2001
  • Aluminum dross should be recycled in consideration of characteristics of the dross and its reutilization after processing. In this study, aluminum dross generated in the domestic secondary aluminum industry was processed to use it as raw material for producing aluminum hydroxide. Sample dross was classified according to its size. The dross smaller than $850\mu$m was leached with sodium hydroxide solution to extract the remaining aluminum from the dross into the solution, and then aluminum hydroxide precipitate was recovered (rom the leach liquor. Purity of the obtained aluminum hydroxide was above 98% and size of the sample was in range of $\3~39mu$m. Recovery of aluminum hydroxide precipitate was highest on condition that A/C ratio of the solution was 0.5 and pulp density was 14~16% at the leaching step. From the result, it was suggested that this process could be applicable to recycling of aluminum dross.

  • PDF

Preparation of LiCoO$_2$from Used Lithium Ion Battery by Hydrometallurgical Processes

  • Lee, Churl-Kyoung;Rhee, Kang-In;Yang, Dong-Hyo;Yu, Hyo-Shin
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.240-244
    • /
    • 2001
  • Recycling process involving mechanical, thermal, hydrometallurgical, and sol-gel step has been applied to recover cobalt and lithium from spent lithium ion batteries and to synthesize LiCoO$_2$from leach liquor as cathodic active materials. Electrode materials containing lithium and cobalt could be concentrated with 2-step thermal and mechanical treatment. Leaching behaviors of the lithium and cobalt in nitric acid media was investigated in terms of reaction variables. Hydrogen peroxide in 1 M HNO$_3$solution turned out to be an effective reducing agent by enhancing the leaching efficiency. O f many possible processes to produce LiCoO$_2$, the amorphous citrate precursor process (ACP) has been applied to synthesize powders with a large specific surface area and an exact stoichiometry. After leaching used LiCoO$_2$with nitric acid, the molar ratio of Li/Co in the leach liquor was adjusted at 1.1 by adding a fresh LiNO$_3$solution. Then, 1 M citric acid solution at a 100% stoichiometry was also added to prepare a gelatinous precursor. When the precursor was calcined at 95$0^{\circ}C$ for 24 hr, purely crystalline LiCoO$_2$was successfully obtained. The particle size and specific surface area of the resulting crystalline powders were 20 пm and 30 $\textrm{cm}^2$/g, respectively The LiCoO$_2$powder was proved to have good characteristics as cathode active materials in charge/discharge capacity and cyclic performance.

  • PDF