• Title/Summary/Keyword: LbL method

Search Result 64, Processing Time 0.021 seconds

Physiological Activities of Fermented Gastrodia elata Blume Extracts (발효 천마 추출물의 생리 활성)

  • Park, An Na;Ku, Tae Kyu;Kim, Kyung Sun;Lee, Dong Won;Kim, Sang Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.702-711
    • /
    • 2015
  • This study was conducted to determine the feasibility of using Gastrodia elata Blume as a cosmetic raw material by investigating the physiological activities of its extracts, varying the concentration, solvent, and fermentation method (non-fermentation and fermentation using lactic acid bacteria and effective microorganisms). Of the extracts in three different solvents-water, EtOH, and 70% EtOH-at four different concentrations (0.725, 1.25, 2.5, and 5 mg/mL), the EtOH extracts demonstrated the highest contents of antioxidants (flavonoids, polyphenols, and DPPH free radical scavengers). The DPPH free radical scavenging activity in the EtOH extracts of EM-fermented Gastrodia elata Blume increased from $27.08{\pm}0.5%$ at 1.25 mg/mL to $35.89{\pm}0.8%$ at 2.5 mg/mL. The tyrosinase inhibitory activity test was performed to measure skin-whitening capacity and revealed the LB-fermented EtOH extracts to be the most efficacious ($39.1{\pm}0.4%$ at 0.725 mg/mL, $62.8{\pm}1.5%$ at 2.5 mg/mL). Viability was found to exceed 85% in RAW 264.7 cells treated with all extracts (water, EtOH, 70% EtOH at 10, 25, $50{\mu}L$, fermented and non-fermented), thus proving that Gastrodia elata Blume extracts do not cause inflammation. When RAW 264.7 cells were stimulated with lipopolysaccharide as positive controls under the same conditions to determine the antioxidant activity in the presence of reactive oxygen species (ROS), EM-fermentation was found to impart excellent antioxidant capacity. This study verified the physiological activities of fermented Gastrodia elata Blume extracts that are best suited for cosmetic ingredients, such as antioxidants, tyrosinase inhibitors and anti-inflammatory agents.

High Throughput Screening and Directed Evolution of Tyrosine Phenol-Lyase (Tyrosine Phenol-Lyase의 고속탐색기술 개발 및 방향성 분자진화)

  • Choi Su-Lim;Rha Eu-Gene;Kim Do-Young;Song Jae-Jun;Hong Seung-Pyo;Sung Moon-Hee;Lee Seung-Goo
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.58-62
    • /
    • 2006
  • Rapid assay of enzyme is a primary requirement for successful application of directed evolution technology. Halo generation on a turbid plate would be a method of choice for high throughput screening of enzymes in this context. Here we report a new approach to prepare turbid plates, by controlling the crystallization of tyrosine to form needle-like particles. In the presence of tyrosine phenol-lyase (TPL), the needle-like tyrosine crystals were converted to soluble phenol rapidly than the usual rectangular tyrosine crystals. When an error-prone PCR library of Citrobacter freundii TPL was spread on the turbid plate, approximately 10% of the colonies displayed recognizable halos after 24 hours of incubation at $37^{\circ}C$. Representative positives from the turbid plates were transferred to LB-medium in 96-wellplates, cultivated overnight, and assayed for the enzyme activity with L-tyrosine as the substrate. The assay results were approximated to be proportional to the halo size on turbid plates, suggesting the screening system is directly applicable to the directed evolution of TPL. Actually, two best mutants on the turbid plates were identified to be $2{\sim}2.5$ and 1.5-fold improved in the activity.

A Study of Consequence Analysis of Physical Explosion Damage in CO2 Storage Tank (CO2 임시 저장 탱크에서의 물리적 폭발에 따른 피해영향 고찰)

  • Seo, Doo-Hyoun;Jang, Kap-Man;Lee, Jin-Han;Rhie, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.12-19
    • /
    • 2015
  • $CO_2$ is non-flammable, non-toxic gas and not cause of chemical explosion. However, various impurities and some oxides can be included in the captured $CO_2$ inevitably. While the $CO_2$ gas was temporarily stored, the pressure in a storage tank would be reached above 100bar. Therefore, the tank could occur a physical explosion due to the corrosion of vessel or uncertainty. Evaluating the intensity of explosion can be calculated by the TNT equivalent method generally used. To describe the physical explosion, it is assumed that the capacity of a $CO_2$ temporary container is about 100 tons. In this work, physical explosion damage in a $CO_2$ storage tank is estimated by using the Hopkinson's scaling law and the injury effect of human body caused by the explosion is assessed by the probit model.

Study on the Storage of Chestnut (밤 저장(貯藏)에 관(關)한 연구(硏究))

  • Yim, Ho;Kim, Choung-Ok;Shin, Dang-Wha;Suh, Kee- Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.170-175
    • /
    • 1980
  • A mass production of chestnut necessiates the development of economic long-term storage method. The main objective of this study was to confirm the technical aspect of the chestnut storage method which was developed by two year project and to review the method of commercial application. The chestnut used for the experiments were separated in brine $(5.5{\sim}6.0^{\circ}\:B{\acute{a}}ume)$ into matured and unmatured lots and fumigated with $CS_2$ at a 5 $lb/27\;m^3$ level for $25{\sim}30\;hrs.$ The chestnuts were packed in wooden boxes with sawdust (50% moisture) in the ratio of 1 : 1 by volume. The boxes were stored in the cold room $(1{\pm}1^{\circ}C,\;85{\sim}95%\;RH)$ and the cellar ($0{\sim}10^{\circ}C$, controlled only by circulating night cool air). The results obtained were as follows: 1. Fully matured chestnut could be successfully preserved $8{\sim}9\;months$ at a l0% decay level in the cold room and $4{\sim}5\;months$ months in cellar. 2. Immatured chestnuts wire inferior to the matured in storage stability. At the maximum storage period, its storage life was two months shorter. 3. The heat transfer equation of piled chestnuts with sawdust can be suggested as $T_{\infty}-T_0=(T_{\infty}-T_0){\cdot}10^{-t/320}$ and j and $f_h$ values were 1 and 320 min, respectively. 4. The chestnuts in the package of storage unit had longer shelf life than naked chestnut during the retail distribution at ambient temperature.

  • PDF