• Title/Summary/Keyword: Layered soil

Search Result 292, Processing Time 0.026 seconds

Numerical analysis of deep excavation in layered and asymmetric ground conditions (흙막이 굴착 시 지층 경사의 영향에 대한 수치해석적 분석)

  • Shin, Jong-Ho;Kim, Hak-Moon;Kim, Sang-Hwan;Kim, Sang-Kil;Nam, Taek-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1260-1268
    • /
    • 2008
  • In case of deep excavation analysis, the theory of beam on elasto-plastic geo-material (elasto-plastic theory) can not consider the inclined ground layers appropriately. It is frequently assumed that the soil layers are parallel to the surface. However, the soil layers are generally inclined and even asymmetric. The common modelling of the asymmetric half section of the excavation system using the elasto-plastic theory, can lead differences from the real behaviour of ground, which has critical significance in case of deep excavation in urban area. In this study, an attempt to find appropriate modelling methods was made by carrying out a comparative study between the FEM and the elasto-plastic analyses. It is shown that in case of the upward-inclined soil profile the elasto-plastic theory may underestimate the performance of retaining structures.

  • PDF

Measurement and Analysis of Earth Resistivity for the Substation Grounding Design (변전소 접지설계를 위한 대지고유저항의 측정과 해석)

  • Han, P.;Kim, J.Y.;Choi, J.K.;Jung, G.J.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.807-812
    • /
    • 1997
  • For an equivalent uniform soil model to multiple-layered soil structure, ground depth, which is used in the calculation of equivalent resistivity, should be varied according to the size of grounding area. In case of 150 kV substation grounding design, 15 m of ground depth has been used and 25 m for 345 kV, But applying these ground depths can lead to errors in grounding resistance calculation, and these errors are coming from the poor representation of those depths to real soil resistivities. In this paper, the soil resistivity measurement techniques by Wenner method and grounding resistance calculation results by computer simulation were presented. Case studies contain the area from 3,000 to $30,000\;m^2$ and measuring space from of m to $100{\sim}250\;m$, Based of the computation results, 50 m, 60 m and 80 m of ground depth for less than 30, 40 and 70 m of equivalent hemispherical radius were proposed respectively.

  • PDF

A Study on 3D Evaluation and Reduction Method for Vibration of Track-Roadbed due to Railway Load (열차하중으로 인한 궤도-지반의 3D 진동평가 및 저감방법에 관한 연구)

  • Kang, Bo-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • The paper describes four practical cases of railway structure concerning a three-dimensional numerical approach to analyse dynamic soil-structure interaction(SSI)of railway tracks on layered soil under transient load in the time domain. The SSI-Model has been implemented in TDAPIII accounting for nonlinear properties of the track and soil. The approach can be also be used to calculate vibration propagation in the soil and its effect on nearby buildings and structure. The Method is applied to analyse the dynamic response of railway tracks due to a moving wheel set. Finally some sample are given in order to reduce the vibration at the point of emission, at the transmission path and the structure itself.

Fluid-structure-soil interaction analysis of cylindrical liquid storage tanks subjected to horizontal earthquake loading

  • Kim, Jae-Min;Chang, Soo-Hyuk;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.615-638
    • /
    • 2002
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure considering the effects of the interior fluid and exterior soil medium in the frequency domain. The horizontal and rocking motions of the structure are included in this study. The fluid motion is expressed in terms of analytical velocity potential functions, which can be obtained by solving the boundary value problem including the deformed configuration of the structure as well as the sloshing behavior of the fluid. The effect of the fluid is included in the equation of motion as the impulsive added mass and the frequency-dependent convective added mass along the nodes on the wetted boundary of the structure. The structure and the near-field soil medium are represented using the axisymmetric finite elements, while the far-field soil is modeled using dynamic infinite elements. The present method can be applied to the structure embedded in ground as well as on ground, since it models both the soil medium and the structure directly. For the purpose of verification, earthquake response analyses are performed on several cases of liquid tanks on a rigid ground and on a homogeneous elastic half-space. Comparison of the present results with those by other methods shows good agreement. Finally, an application example of a reinforced concrete tank on a horizontally layered soil with a rigid bedrock is presented to demonstrate the importance of the soil-structure interaction effects in the seismic analysis for large liquid storage tanks.

Seismic Response Analysis for Three Dimensional Soil-structure Interaction System using Dynamic Infinite Elements (동적 무한요소를 이용한3차원 지반-구조물 상호작용계의 지진응답해석)

  • Seo, Choon-Gyo;Ryu, Jeong-Soo;Kim, Jae-Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.55-63
    • /
    • 2008
  • This paper presents a seismic analysis technique for a 3D soil-structure interaction system in a frequency domain, based on the finite element formulation incorporating frequency-dependent infinite elements for the far field soil region. Earthquake input motions are regarded as traveling P, SV and SH waves which are incident vertically from the far-field soil region, and then equivalent earthquake forces are calculated using impedances of infinite soil by dynamic infinite elements and traction and displacement from free field response analysis. For verification and application, seismic response analyses are carried out for a multi-layered soil medium without structure and a typical nuclear power plant in consideration of soil-structure interaction. The results are compared with the free field response using a one-dimensional analytic solution, and a dynamic response of an example structure from another SSI package.

Effect of water jetting parameters on the penetration behavior of jack-up spudcan in surficial sand condition

  • Han, Dong-Seop;Kim, Seung-Jun;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-19
    • /
    • 2015
  • The water jetting system for a jack-up spudcan requires the suitable design considering the platform/spudcan particulars, environments, and soil conditions, either the surficial clay or surficial sand. The usage of water jetting depends critically on soil conditions. The water jetting is usually used for the smooth and fast extraction of the spudcan in the surficial clay condition. It is also required for inserting spudcan up to the required depth in the surficial sand condition, which is investigated in this paper. Especially, it should be very careful to use the water jetting during an installation of spudcan in the surficial sand condition, because there is a risk of overturning accident related to the punch-through. Therefore, in this study, the effect of water jetting flow rate and time on the change of soil properties and penetration resistance is analyzed to better understand their interactions and correlations when inserting the spudcan with water jetting in surficial sand condition. For the investigation, a wind turbine installation jack-up rig (WTIJ) is selected as the target platform and the multi layered soil (surficial sand overlaying clays) is considered as the soil condition. The environmental loading and soil-structure interaction (SSI) analysis are performed by using CHARM3D and ANSYS. This kind of investigation and simulation is needed to decide the proper water jetting flow rate and time of spudcan for the given design condition.

Effect of Variety and Shading Material on Growth Characteristics and Ginsenoside Contents of 2-Year-Old Ginseng (Panax ginseng C. A. Meyer) Grown in Imperfectly Drained Paddy Soil (배수약간불량 논토양에서 품종 및 해가림 피복물 종류가 2년생 인삼의 생육과 진세노사이드 함량에 미치는 영향)

  • Lee, Sung-Woo;Yeon, Byeong-Yeol;Kim, Chung-Guk;Shin, Yoo-Su;Hyun, Dong-Yun;Kang, Seung-Won;Cha, Seon-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.6
    • /
    • pp.434-438
    • /
    • 2008
  • To selection of optimal shading material, two-year-old ginseng (Panax ginseng C. A. Meyer) of new cultivar, 'Cheonpoong' (CP), and native species 'Hwangsookjong' (HS) were cultured under three kinds of shading materials such as three-layered blue and a one-layered black PE (polyethylene) net (TBSB), blue PE sheet (BS), and aluminium coated PE sheet (AS) in imperfectly drained paddy soil. Growth characteristics, yield and ginsenoside contents were investigated under three shading materials. Yield and ginsenoside contents of ginseng were distinctly affected by intensity and quality of sunlight penetrated through shading materials. Light transmission ratio, air and soil temperature according to shading materials were higher in order of BS, AS, and TBSB. However, ratio of aerial phase and porosity of the soil were higher in order of AS, BS, and TBSB, respectively. There was no significantly difference in the ratio of rusty colored root by shading materials. CP showed higher stem length, leaf area, and root weight than that of HS, while the former showed distinctly lower discolored leaf ratio than that the other. Eight kinds of ginsenosides content of CP were higher than that of HS in $Rg_1$, Re, Rf, $Rb_1$ and Rc except $Rg_2$, $Rb_2$, and $Rb_3$. Total ginsenoside contents of CP was distinctly higher than that of HS. Total ginsenoside contents as affected by shading materials was higher in order of BS, TBSB, and AS in CP, while TBSB, BS, and AS in HS.

Advanced model of subbases for the multi-layered pavement system (다층 포장 구조체의 개선된 지반 모델)

  • 조병완;이계삼
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.53-56
    • /
    • 1995
  • Despite the recent development of structural analysis programs for the CRCP pavements over Westergaard's equations and finite element techniques, the Winkler foundations which are modelled by series of vertical springs at the nodes are generally used for the computer modelling of subbases under the concrete slab. Herewith, two parameter of soil foundation model is adopted as the most convenient mathematical model to enable deflections outside the loaded area to be effected and to upgrade the Winkler foundations. This paper highlights the derivations of finite element method for the two-parameter soil foundation model in the concrete pavements.

  • PDF

Dynamic Infinite Elements for 3D Soil-Structure Interaction Analysis (3차원 지반-구조물 상호작용해석을 위한 동적 무한요소)

  • Seo Choon-Kyo;Yun Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.521-528
    • /
    • 2005
  • In this paper, three dimensional dynamic infinite elements are developed for the soil-structure interaction analysis in multi-layered halfspace. For the efficient discretization of 3-D for field regions, five types of dynamic infinite elements are developed. They are the horizontal, vertical, horizontal comer, vertical comer and horizontal/vertical corner infinite elements. The shape functions of the infinite elements are based on approximate expressions of analytical solutions of propagating waves in the infinite region. Numerical example analyses are presented for compliances of rigid circular and square plates to demonstrate the effectiveness of the proposed infinite elements.

  • PDF

A Conceptual Algorithm for Determining the Spacing of Standard Penetration Test Spots. (표준관입시험 간격 결정을 위한 개념적 알고리즘)

  • Habimana, Gilbert;Lee, Donghoon;Han, Kyung-Bo;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.185-186
    • /
    • 2015
  • The Standard penetration test determines the type of soil according to soil bearing capacity, and this classifies the subsoil into many layers. Construction project managers are willing to know the depth of the present types of subsoil on site in order to make plans on earthwork stage during excavation. However the standard penetration test may not provide accurate information on subsoil type due to incorrect spacing. To solve this problem, this study propose a conceptual algorithm for determining the spacing of standard penetration test spots to essentially tests relevant locations on which to be applied the standard penetration test. This provides the acquirement of the accurate layered model volume of earthwork revised into geological columnar section. This algorithm will determine the appropriate standard penetration test spots spacing on a given size of site to optimize the accuracy of the earthwork volume, time and cost.

  • PDF