• Title/Summary/Keyword: Layered clouds

Search Result 6, Processing Time 0.025 seconds

Implementation of Layered Clouds considering Frame Rate and Reality in Real-time Flight Simulation (비행시뮬레이션에서 프레임율과 현실감을 고려한 계층형 구름 구현 방안)

  • Kang, Seok-Yoon;Kim, Ki-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.72-77
    • /
    • 2014
  • There are two main technologies to implement cloud effect in flight simulator, cloud modeling using particle system and texture mapping. In former case, this approach may cause a low frame rate while unrealistic cloud effect is observed in latter case. To Solve this problem, in this paper, we propose how to apply fog effect into camera to display more realistic cloud effect with high frame rate. The proposed method is tested with massive terrain database environment through implemented software by using OpenSceneGraph. As a result, compared to texture mapping method, the degree of difference on frame rate is 1 or 2Hz while the cloud effect is significantly improved as realistic as particle system.

Dust Scattering Simulation in Taurus-Auriga-Perseus(TPA) Complex

  • Lim, Tae-Ho;Seon, Kwang-Il;Min, Kyung-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.88.1-88.1
    • /
    • 2011
  • We present the FIMS/SPEAR FUV continuum map of The Taurus - Auriga - Perseus (TPA) complex, which is one of the largest local association of dark clouds located in (l,b)~([152,180],[-28,0]). We also present the result of FUV dust scattering simulation, which is based on Monte Carlo Radiative Transfer(MCRT) technique. Before the simulation we generate the model cloud using Hipparcos 77834 stars and the calculation of their E(B-V). From the density-integrated image and the cross section image of the modeled cloud we confirmed that the Taurus cloud is located in ~130pc. The cloud north of the California nebula is known for its two layered structure and we confirm that using the cross section image of the modeled cloud. In our modeled cloud, that two clouds are located at ~130pc and at ~300pc, respectively. Over the whole region the result image of simulation is well correlated with the diffuse FUV observed with FIMS/SPEAR. The dense core of the Taurus cloud, however, is not revealed completely in the map.

  • PDF

Cloud-Type Classification by Two-Layered Fuzzy Logic

  • Kim, Kwang Baek
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • Cloud detection and analysis from satellite images has been a topic of research in many atmospheric and environmental studies; however, it still is a challenging task for many reasons. In this paper, we propose a new method for cloud-type classification using fuzzy logic. Knowing that visible-light images of clouds contain thickness related information, while infrared images haves height-related information, we propose a two-layered fuzzy logic based on the input source to provide us with a relatively clear-cut threshold in classification. Traditional noise-removal methods that use reflection/release characteristics of infrared images often produce false positive cloud areas, such as fog thereby it negatively affecting the classification accuracy. In this study, we used the color information from source images to extract the region of interest while avoiding false positives. The structure of fuzzy inference was also changed, because we utilized three types of source images: visible-light, infrared, and near-infrared images. When a cloud appears in both the visible-light image and the infrared image, the fuzzy membership function has a different form. Therefore we designed two sets of fuzzy inference rules and related classification rules. In our experiment, the proposed method was verified to be efficient and more accurate than the previous fuzzy logic attempt that used infrared image features.

Study on Characteristics of Snowfall and Snow Crystal Habits in the ESSAY (Experiment on Snow Storms At Yeongdong) Campaign in 2014 (2014년 대설관측실험(Experiment on Snow Storms At Yeongdong: ESSAY)기간 강설 및 눈결정 특성분석)

  • Seo, Won-Seok;Eun, Seung-Hee;Kim, Byung-Gon;Ko, A-Reum;Seong, Dae-Kyeong;Lee, Gyu-Min;Jeon, Hye-Rim;Han, Sang-Ok;Park, Young-San
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.261-270
    • /
    • 2015
  • Characteristics of snowfall and snow crystal habits have been investigated in the campaign of Experiment on Snow Storms At Yeongdong (ESSAY) using radiosonde soundings, Global Navigation Satellite System (GNSS), and a digital camera with a magnifier for taking a photograph of snowfall crystals. The analysis period is 6 to 14 February 2014, when the accumulated snowfall amount is 192.8 cm with the longest snowfall duration of 9 days. The synoptic situations are similar to those of the previous studies such as the Low pressure system passing by the far South of the Korean peninsula along with the Siberian High extending to northern Japan, which eventually results in the northeasterly or easterly flows and the long-lasting snowfall episodes in the Yeongdong region. In general, the ice clouds tended to exist below around 2~3 km with the consistent easterly flows, and the winds shifted to northerly~northwesterly above the clouds layer. The snow crystal habits observed in the ESSAY campaign were mainly dendrite, consisting of 70% of the entire habits. The rimed habits were frequently captured when two-layered clouds were observed, probably through the process of freezing of super-cooled droplets on the ice particles. The homogeneous habit such as dendrite was shown in case of shallow clouds with its thickness of below 500 m whereas various habits were captured such as dendrites, rimed dendrites, aggregates of dendrites, plates, rimed plates, etc in the thick cloud with its thickness greater than 1.5 km. The dendrites appeared to be dominant in the condition of cloud top temperature specifically ranging $-12{\sim}-16^{\circ}C$. However, the association of snow crystal habits with temperature and super-saturation in the cloud could not be examined in the current study. Better understandings of characteristics of snow crystal habits would contribute to preventing breakdown accidents such as a greenhouse destruction and collapse of a temporary building due to heavy snowfall, and traffic accidents due to snow-slippery road condition, providing a higher-level weather information of snow quality for skiers participating in the winter sports, and estimating more accurate snowfall amount, location, and duration with the fallspeed of solid precipitation.

LINEAR ANALYSIS OF PARKER-JEANS INSTABILITY WITH COSMIC-RAY

  • KUWABARA TAKUHITO;KO CHUNG-MING
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.601-603
    • /
    • 2004
  • We present the results of the linear analysis for the Parker-Jeans instability in the magnetized gas disks including the effect of cosmic-ray diffusion along the magnetic field lines. We adopted an uni-formly rotating two temperature layered disk with a horizontal magnetic fields and solved the perturbed equations numerically. Fragmentation of gases takes place and filamentary structures are formed by the growth of the instability. Nagai et al. (1998) showed that the direction of filaments being formed by the Parker-Jeans instability depends on the strength of pressure outside the unperturbed gas disk. We found that at some range of external pressures the direction of filaments is also governed by the value of the diffusion coefficient of CR along the magnetic field lines k.

Rapid Prototyping from Reverse Engineered Geometric Data (리버스 엔지니어링으로 생성된 데이터를 이용한 쾌속 조형 기술 연구)

  • Woo, Hyuck-Je;Lee, Kwan-Heng
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.95-107
    • /
    • 1999
  • The design models of a new product in general are created using clay models or wooden mock-ups. The reverse engineering(RE) technology enables us to quickly create the CAD model of the new product by capturing the surface of the model using laser digitizers or coordinate measuring machines. Rapid prototyping (RP) is another technology that can reduce the product development time by fabricating the physical prototype of a part using a layered manufacturing technique. In reverse engineering process, however, the digitizer generates an enormous amount of point data, and it is time consuming and also inefficient to create surfaces out of these data. In addition, the surfacing operation takes a great deal of time and skill and becomes a bottleneck. In rapid prototyping, a faceted model called STL file has been the industry standard for providing the CAD input to RP machines. It approximates the CAD model of a part using many planar triangular patches and has drawbacks. A novel procedure that overcomes these problems and integrates RE with RP is proposed. Algorithms that drastically reduce the point clouds data have been developed. These methods will facilitate the use of reverse engineered geometric data for rapid prototyping, and thereby will contribute in reducing the product development time.

  • PDF