• Title/Summary/Keyword: Layered Series

Search Result 99, Processing Time 0.03 seconds

Statistical Qualitative Analysis on Chemical Mechanical Polishing Process and Equipment Characterization

  • Hong, Sang-Jeen;Hwang, Jong-Ha;Seo, Dong-Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.115-118
    • /
    • 2011
  • Process characterization of the chemical mechanical polishing (CMP) process for undensified phosphosilicate glass (PSG) film is reported using design of experiments (DOE). DOE has been addressed to experimenters to understand the relationship between input variables and responses of interest in a simple and efficient way. It is typically beneficial for determining the adequate size of experiments with multiple process variables and making statistical inferences for the responses of interests. Equipment controllable parameters to operate the machine include the down force (DF) of the wafer carrier, pressure on the backside of the wafer, table and spindle speed (SS), slurry flow rate, and pad condition. None of them is independent; thus, the interaction between parameters also needs to be indicated to improve process characterization in CMP. In this paper, we have selected the five controllable equipment parameters, such as DF, back pressure (BP), table speed (TS), SS, and slurry flow (SF), most process engineers recommend to characterize the CMP process with respect to material removal rate (RR) and film uniformity as a percentage. The polished material is undensified PSG. PSG is widely used for the plananization in multi-layered metal interconnects. We identify the main effect of DF, BP, and TS on both RR and film uniformity, as expected, by the statistical modeling and analysis on the metrology data acquired from a series of $2^{5-1}$ fractional factorial design with two center points. This revealed the film uniformity of the polished PSG film contains two and three-way interactions. Therefore, one can easily infer that the process control based on better understanding of the process is the key to success in semiconductor manufacturing, typically when the wafer size reaches 300 mm and is continuously scheduled to expand up to 450 mm in or little after 2012.

Improving Power Conversion Efficiency and Long-term Stability Using a Multifunctional Network Polymer Membrane Electrolyte; A Novel Quasi-solid State Dye-sensitized Solar Cell

  • Gang, Gyeong-Ho;Gwon, Yeong-Su;Song, In-Yeong;Park, Seong-Hae;Park, Tae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.484.2-484.2
    • /
    • 2014
  • There are many efforts to improving the power conversion efficiencies (PCEs) of dye-sensitized solar cells (DSCs). Although DSCs have a low production cost, their low PCE and low thermal stability have limited commercial applications. This study describes the preparation of a novel multifunctional polymer gel electrolyte in which a cross-linking polymerization reaction is used to encapsulate $TiO_2$ nanoparticles toward improving the power conversion efficiency and long-term stability of a quasi-solid state DSC. A series of liquid junction dye-sensitized solar cells (DSCs) was fabricated based on polymer membrane encapsulated dye-sensitized $TiO_2$ nanoparticles, prepared using a surface-induced cross-linking polymerization reaction, to investigate the dependence of the solar cell performance on the encapsulating membrane layer thickness. The ion conductivity decreased as the membrane thickness increased; however, the long term-stability of the devices improved with increasing membrane thickness. Nanoparticles encapsulated in a thick membrane (ca. 37 nm), obtained using a 90 min polymerization time, exhibited excellent pore filling among $TiO_2$ particles. This nanoparticle layer was used to fabricate a thin-layered, quasi-solid state DSC. The thick membrane prevented short-circuit paths from forming between the counter and the $TiO_2$ electrode, thereby reducing the minimum necessary electrode separation distance. The quasi-solid state DSC yielded a high power conversion efficiency (7.6/8.1%) and excellent stability during heating at $65^{\circ}C$ over 30 days. These performance characteristics were superior to those obtained from a conventional DSC (7.5/3.5%) prepared using a $TiO_2$ active layer with the same thickness. The reduced electrode separation distance shortened the charge transport pathways, which compensated for the reduced ion conductivity in the polymer gel electrolyte. Excellent pore filling on the $TiO_2$ particles minimized the exposure of the dye to the liquid and reduced dye detachment.

  • PDF

Finite Element Analysis of Pilgering Process of Multi-Metallic Layer Composite Fuel Cladding (다중금속복합층 핵연료 피복관의 필거링 공정에 관한 유한 요소 해석 연구)

  • Kim, Taeyong;Lee, Jeonghyeon;Kim, Ji Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • In severe accident conditions of light water reactors, the loss of coolant may cause problems in integrity of zirconium fuel cladding. Under the condition of the loss of coolant, the zirconium fuel cladding can be exposed to high temperature steam and reacted with them by producing of hydrogen, which is caused by the failure in oxidation resistance of zirconium cladding materials during the loss of coolant accident scenarios. In order to avoid these problems, we develop a multi-metallic layered composite (MMLC) fuel cladding which compromises between the neutronic advantages of zirconium-based alloys and the accident-tolerance of non-zirconium-based metallic materials. Cold pilgering process is a common tube manufacturing process, which is complex material forming operation in highly non-steady state, where the materials undergo a long series of deformation resulting in both diameter and thickness reduction. During the cold pilgering process, MMLC claddings need to reduce the outside diameter and wall thickness. However, multi-layers of the tube are expected to occur different deformation processes because each layer has different mechanical properties. To improve the utilization of the pilgering process, 3-dimensional computational analyses have been made using a finite element modeling technique. We also analyze the dimensional change, strain and stress distribution at MMLC tube by considering the behavior of rolls such as stroke rate and feed rate.

Quantitative Evaluation of Geotextile Void Structures Using Digital Image Analysis (디지털 이미지 분석을 이용한 지오텍스타일 공극 분포의 정량화)

  • Kim, Duhwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • This paper presents results from a study undertaken to quantitatively evaluate the geotextile pore sizes using optical image analysis. The evaluation was conducted by observing surfaces of coupons cut from resin-impregnated specimens of geotextile-geomembrane layered under various load conditions. Stereological concepts were applied to collect representative specimens from a series of laboratory tests. The sizes of voids enclosed by filaments were expressed in terms of the largest inscribing opening size (LIOS) distribution. The opening diameter corresponding to the 50% cumulative frequency decreased by about 45mm as the load increased from 10 to 300kPa and recovered to about 90% of its initial state on unloading back to 10kPa. The average void size was reduced by 32 and 16.5% as the geotextile was sheared against a textured geomembrane under normal stresses of 100 and 300kPa, respectively. The results showed how the LIOS distribution varied as a function of normal stress and interface shear displacement against a smooth and a textured geomembrane surfaces.

Experimental study on the performance of compensation grouting in structured soil

  • Zheng, Gang;Zhang, Xiaoshuang;Diao, Yu;Lei, Huayang
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.335-355
    • /
    • 2016
  • Most laboratory test research has focused on grouting efficiency in homogeneous reconstituted soft clay. However, the natural sedimentary soils generally behave differently from reconstituted soils due to the effect of soil structure. A series of laboratory grouting tests were conducted to research the effect of soil structure on the performance of compensation grouting. The effects of grouting volume, overlying load and grouting location on the performance of compensation grouting under different soil structures were also studied. Reconstituted soil was altered with added cement to simulate artificial structured soil. The results showed that the final grouting efficiency was positive and significantly increased with the increase of stress ratio within a certain range when grouting in normally consolidated structured clay. However, in the same low yield stress situation, the artificial structured soil had a lower final grouting efficiency than the overconsolidated reconstituted soil. The larger of normalized grouting volume could increase the final grouting efficiency for both reconstituted and artificial structured soils. Whereas, the effect of the overlying load on final grouting efficiencies was unfavourable, and was independent of the stress ratio. As for the layered soil specimens, grouting in the artificial structured soil layer was the most efficient. In addition, the peak grouting pressure was affected by the stress ratio and the overlying load, and it could be predicted with an empirical equation when the overlying load was less than the yield stress. The end time of primary consolidation and the proportion of secondary consolidation settlement varied with the different soil structures, grouting volumes, overlying loads and grouting locations.

The flexural performance of laminated glass beams under elevated temperature

  • Huang, Xiaokun;Liu, Gang;Liu, Qiang;Bennison, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.603-612
    • /
    • 2014
  • A series of experimental work is carried out with the aim to understand the flexural performance of laminated glass (LG) beams using polyvinyl butyral (PVB) and Ionoplast interlayers subjected to short term duration loads in the circumstance of elevated temperature. The study is based on a total of 42 laboratory tests conducted in ambient temperature ranging from $25^{\circ}C$ to $80^{\circ}C$. The load duration is kept within 20 seconds. Through the tests, load-stress and load-deflection curves of the LG are established; appropriate analytical models for the LG are indentified; the effective thicknesses as well as the shear transfer coefficients of the LG are semi-empirically determined. The test results show that within the studied temperature range the bending stresses and deflections at mid-span of the LG develop linearly with respect to the applied loads. From $25^{\circ}C$ to $80^{\circ}C$ the flexural behavior of the PVB LG is found constantly between that of monolithic glass and layered glass having the same nominal thickness; the flexural behavior of the Ionoplast LG is equivalent to monolithic glass of the same nominal thickness until the temperature elevates up to $50^{\circ}C$. The test results reveal that in calculating the effective thicknesses of the PVB and Ionoplast LG, neglecting the shear capacities of the interlayers is uneconomic even when the ambient temperature is as high as $80^{\circ}C$. In the particular case of this study, the shear transfer coefficient of the PVB interlayer is found in a range from 0.62 to 0.14 while that of the Ionoplast interlayer is found in a range from 1.00 to 0.56 when the ambient temperature varies from $25^{\circ}C$ to $80^{\circ}C$.

System identification of soil behavior from vertical seismic arrays

  • Glaser, Steven D.;Ni, Sheng-Huoo;Ko, Chi-Chih
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.727-740
    • /
    • 2008
  • A down hole vertical seismic array is a sequence of instruments installed at various depths in the earth to record the ground motion at multiple points during an earthquake. Numerous studies demonstrate the unique utility of vertical seismic arrays for studying in situ site response and soil behavior. Examples are given of analyses made at two sites to show the value of data from vertical seismic arrays. The sites examined are the Lotung, Taiwan SMART1 array and a new site installed at Jingliao, Taiwan. Details of the installation of the Jingliao array are given. ARX models are theoretically the correct process models for vertical wave propagation in the layered earth, and are used to linearly map deeper sensor input signals to shallower sensor output signals. An example of Event 16 at the Lotung array is given. This same data, when examined in detail with a Bayesian inference model, can also be explained by nonlinear filters yielding commonly accepted soil degradation curves. Results from applying an ARMAX model to data from the Jingliao vertical seismic array are presented. Estimates of inter-transducer soil increment resonant frequency, shear modulus, and damping ratio are presented. The shear modulus varied from 50 to 150 MPa, and damping ratio between 8% and 15%. A new hardware monitoring system - TerraScope - is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. An internal 16-bit micro-controller oversees all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage.

Periodontal biotype modification using a volume-stable collagen matrix and autogenous subepithelial connective tissue graft for the treatment of gingival recession: a case series

  • Kim, Hyun Ju;Chang, Hyeyoon;Kim, Sungtae;Seol, Yang-Jo;Kim, Hyeong-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.6
    • /
    • pp.395-404
    • /
    • 2018
  • Purpose: The purpose of this study was to propose a technique for periodontal biotype modification through thickening of the entire facial aspect using a volume-stable collagen matrix and autogenous subepithelial connective tissue graft (CTG) for the treatment of gingival recession. Methods: Four systemically healthy patients showing Miller class I or class II gingival recession in the mandibular incisor area were included in this study. Full-mouth scaling and root planing procedures were performed at least 4 weeks prior to periodontal plastic surgery. A split-thickness flap with a horizontal intrasulcular incision and 2 vertical incisions was used in cases 1-3, and the modified tunnel technique was used in case 4 for coronal advancement of the mucogingival complex. After the exposed root surfaces were debrided thoroughly, double-layered volume-stable collagen matrix was placed on the apical part of the recession and a subepithelial CTG harvested from the palatal area was placed on the coronal part. The amount of root coverage at 3 months postoperatively was evaluated in cases 1-3, and facio-lingual volumetric changes were analyzed in cases 1 and 2. Results: Healing was uneventful in all 4 cases and complete root coverage was shown in cases 1-3. In case 4, reduction of gingival recession was observed at 3 months after surgery. In cases 1 and 2, a comparison of stereolithographic files from the preoperative and postoperative time points demonstrated that the entire facio-lingual volume had increased. Conclusions: The surgical technique suggested herein, using a volume-stable collagen matrix and autogenous subepithelial CTG, may be an effective method for periodontal biotype modification through thickening of the entire facial aspect for the treatment of gingival recession.

Anchor and Mooring Line Analysis in Cohesive Seafloor (해성점토지반에 관입된 앵커 및 닻줄의 변형해석)

  • Han Heui-Soo;Jeon Sung-Kon;Chang Dong-Hun;Chang Seo-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.37-43
    • /
    • 2006
  • An analytical solution method capable of determining the geometric configuration and developed tensile forces of mooring lines associated with fixed plate/pile or drag anchors has been developed. The solution method, satisfying complete equilibrium conditions, is capable of analyzing multi-segmented mooring lines that can consist of either chains, cables, or synthetic wires embedded in layered seafloor soils. The solution method utilizes a systematic iterative search method based on specific boundary conditions. This paper describes the principles associated with the development of the solution for the mooring line analysis. Comparisons of predictions with results from a series of field tests of mooring lines on various types of drag anchors are also described. Comparisons include the tension in anchor, the length of mooring line on the bottom, and the angle of mooring line at the water surface buoy. The results indicate that the analytical solution method is capable of predicting the behavior of mooring lines with high degree of accuracy.

Electromagnetic Traveltime Tomography with Wavefield Transformation (파동장 변환을 이용한 전자탐사 주시 토모그래피)

  • Lee, Tae-Jong;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.17-25
    • /
    • 1999
  • A traveltime tomography has been carried out by transforming electromagnetic data in frequency domain to wave-like domain. The transform uniquely relates a field satisfying a diffusion equation to an integral of the corresponding wavefield. But direct transform of frequency domain magnetic fields to wave-field domain is ill-posed problem because the kernel of the integral transform is highly damped. In this study, instead of solving such an unstable problem, it is assumed that wave-fields in transformed domain can be approximated by sum of ray series. And for further simplicity, reflection and refraction energy compared to that of direct wave is weak enough to be neglected. Then first arrival can be approximated by calculating the traveltime of direct wave only. But these assumptions are valid when the conductivity contrast between background medium and the target anomalous body is low enough. So this approach can only be applied to the models with low conductivity contrast. To verify the algorithm, traveltime calculated by this approach was compared to that of direct transform method and exact traveltime, calculated analytically, for homogeneous whole space. The error in first arrival picked by this study was less than that of direct transformation method, especially when the number of frequency samples is less than 10, or when the data are noisy. Layered earth model with varying conductivity contrasts and inclined dyke model have been successfully imaged by applying nonlinear traveltime tomography in 30 iterations within three CPU minutes on a IBM Pentium Pro 200 MHz.

  • PDF