• 제목/요약/키워드: Layered Manufacturing(LM)

검색결과 5건 처리시간 0.02초

3차원 조형장비 선정을 위한 효율적인 의사결정 방법 (An Efficient Decision Maki ng Method for the Selectionof a Layered Manufacturing)

  • 변홍석
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.59-67
    • /
    • 2009
  • The purpose of this study is to provide a decision support to select an appropriate layered manufacturing(LM) machine that suits the application of a part. Selection factors include concept model, form/fit/functional model, pattern model far molding, material property, build time and part cost that greatly affect the performance of LM machines. However, the selection of a LM is not an easy decision because they are uncertain and vague. For this reason, the aim of this research is to propose hybrid multiple attribute decision making approaches to effectively evaluate LM machines. In addition, because subjective considerations are relevant to selection decision, a fuzzy logic approach is adopted. The proposed selection procedure consists of several steps. First, we identify LM machines that the users consider After constructing the evaluation criteria, we calculate the weights of the criteria by applying the fuzzy Analytic Hierarchy Process(AHP) method. Finally, we construct the fuzzy Technique of Order Preference by Similarity to Ideal Solution(TOPSIS) method to achieve the ranking order of all machines providing the decision information for the selection of LM machines.

PaperMill - 박막과 마이크로 엔드밀을 사용한 적층조형 시스템 (PaperMill - A Layered Manufacturing System Using Lamination and Micro Endmill)

  • 배광모;이상욱;이병철;강경수;김형욱;홍영정;진영성;김종철;박정화
    • 한국CDE학회논문집
    • /
    • 제8권2호
    • /
    • pp.115-121
    • /
    • 2003
  • A new Layered Manufacturing(LM) system, named PaperMill, is developed applying micro milling technology. A micro endmill(127 11m in diameter) is introduced as the cutter of build material. The selected build material for this system is an adhesive-coated paper roll which provides advantages such as good bonding between layers, machinability, and low material cost. A 3-axis CNC controller and three step-motors are used for the movement of X-Y-Z table of the system. For simplicity of the control of mechanism, the control system for feeding the paper roll is uncoupled from CNC controller. Two code converters are developed for the toolpath generation of the new LM system. The NC converter generates a set of NC codes for PaperMill using commercial CAM software while the SML converter generates an NC code from Quickslice's SML format. The NC codes generated from the converters consist of a series of profile data and trigger code for paper feeding. Two sample gears were fabricated to prove the concept of the system, which shown that the dimensional errors of the fabricated gears is under 3.4 percent.

기능성 경사복합재의 적층조형을 위한 분해기반 공정계획 (Decomposition-based Process Planning far Layered Manufacturing of Functionally Gradient Materials)

  • 신기훈;김성환
    • 한국CDE학회논문집
    • /
    • 제11권3호
    • /
    • pp.223-233
    • /
    • 2006
  • Layered manufacturing(LM) is emerging as a new technology that enables the fabrication of three dimensional heterogeneous objects such as Multi-materials and Functionally Gradient Materials (FGMs). Among various types of heterogeneous objects, more attention has recently paid on the fabrication of FGMs because of their potentials in engineering applications. The necessary steps for LM fabrication of FGMs include representation and process planning of material information inside an FGM. This paper introduces a new process planning algorithm that takes into account the processing of material information. The detailed tasks are discretization (i.e., decomposition-based approximation of volume fraction), orientation (build direction selection), and adaptive slicing of heterogeneous objects. In particular, this paper focuses on the discretization process that converts all of the material information inside an FGM into material features like geometric features. It is thus possible to choose an optimal build direction among various pre-selected ones by approximately estimating build time. This is because total build time depends on the complexity of features. This discretization process also allows adaptive slicing of heterogeneous objects to minimize surface finish and material composition error. In addition, tool path planning can be simplified into fill pattern generation. Specific examples are shown to illustrate the overall procedure.

Improving the Surface Roughness of SL Parts Using a Coating and Grinding Process

  • Ahn, Dae-Keon;Lee, Seok-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권3호
    • /
    • pp.14-19
    • /
    • 2007
  • Rapid prototyping (RP) technology can fabricate any 3D physical model regardless of geometric complexity using the layered manufacturing (LM) process. Stereolithography (SL) is the best-known example of RP technology. In general, the surface quality of a raw SL-generated part is unsatisfactory for industrial purposes due to the step artefact created by the LM process. Despite of the increased number of applications for SL parts, this side effect limits their uses. In order to improve their surface quality, additional post-machining finishing, such as traditional grinding, is required, but post-machining is time consuming and can reduce the geometric accuracy of a part. Therefore, this study proposes a post-machining technology combining coating and grinding processes to improve the surface quality of SL parts. Paraffin wax and pulp are used as the coating and grinding materials. By grinding the coating wax only up to the boundary of the part, the surface smoothness can be improved without damaging the surface. Finally, moulding and casting experiments were performed to confirm the suitability of the SL parts finished using the proposed process with rapid tooling (RT) techniques.

광조형의 지지대 구조에서 Strand 간격 변화에 대한 파트형상 변형에 관한 연구 (A Study on Part Deformation by Strand Spacing Change in Support Structure of Stereolithography)

  • 안대건;하영명;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.753-756
    • /
    • 2005
  • Rapid prototyping (RP) technologies are mainly performed by layered manufacturing (LM) process which manufactures 3D physical objects by depositing 2D sections in a direction. Thus, deformations are apt to occur in overhanging area of the RP processed part. Also, excessive adhesion between part and platform of the RP apparatus is generated. In order to prevent these problems, most of the RP technologies adopt support structure. Main element to support a part in the support structure is strand. In actual field, however, the number of strand is determined by the software operating reference guide or RP system operator's experience. In this paper, a methodology to determine the optimal strand spacing is presented through experiments and measurements for the SL part deformation by change of strand spacing and part weight in the support structure of the stereolithography.

  • PDF