• Title/Summary/Keyword: Layered Composites

Search Result 155, Processing Time 0.025 seconds

Effects of Fiber Alignment Direction and Stacking Sequence of Laminates on Fracture Behavior of Biomimetic Composites under Pressure Loading (압력하중 하에서 섬유배열방향과 적층판의 적층순서에 따른 생체모방 복합재의 파괴 거동에 관한 연구)

  • Myungsoo Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.201-209
    • /
    • 2023
  • Recently, fiber-reinforced composites have been widely used in various industrials fields. In this study, the mechanical behavior, especially fracture behavior, of biomimetic fiber-reinforced composites subjected to pressure loading was analyzed using finite element analysis (FEA). The fiber alignments in the biomimetic composites formed a helicoidal structure, wherein a stacking sequence involved a gradual rotation of each ply in the multi-layered laminated composites. For comparison, cross-ply composite samples with fibers arranged at 0° and 90° were prepared and analyzed. In addition, the mechanical behavior was analyzed based on combinations of the stacking sequence of carbon-fiber composites and glass-fiber composites. The FEA results showed that, when compared with the cross-ply samples, the mechanical properties of the biomimetic composites were considerably improved under pressure loading, which was applied to one side of the composites. Thus, the biomimetic helicoidal structure significantly improved the mechanical properties of the composites. Placing materials having high elasticity and strength in the outermost layers (the layer of the side on which pressure was applied and the opposite side layer) of the composites also significantly contributed to improving the mechanical properties of the composites.

Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory

  • Vinyas, M.;Harursampath, D.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.667-684
    • /
    • 2020
  • In this article, the static responses of layered magneto-electro-thermo-elastic (METE) plates in thermal environment have been investigated through FE methods. By using Reddy's third order shear deformation theory (TSDT) in association with the Hamilton's principle, the direct and derived quantities of the coupled system have been obtained. The coupled governing equations of METE plates have been derived through condensation technique. Three layered METE plates composed of piezoelectric and piezomagnetic phases are considered for evaluation. For investigating the correctness and accuracy, the results in this article are validated with previous researches. In addition, a special attention has been paid to evaluate the influence of different electro-magnetic boundary conditions and pyrocoupling on the coupled response of METE plates. Finally, the influence of stacking sequences, magnitude of temperature load and aspect ratio on the coupled static response of METE plates are investigated in detail.

Three-dimensional effective properties of layered composites with imperfect interfaces

  • Sertse, Hamsasew;Yu, Wenbin
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.639-650
    • /
    • 2017
  • The objective of this paper is to obtain three-dimensional (3D) effective properties for layered composites with imperfect interfaces using mechanics of structure genome. The imperfect interface is modeled using linear traction-displacement model that allows small infinitesimal displacement jump across the interface. The predictions obtained from the current analysis are compared with the 3D finite element analysis (FEA). In this study, it is found that the present model shows excellent agreement with the results obtained using 3D FEA by employing periodic boundary conditions. The prediction also reveals that in-plane longitudinal and shear moduli, and all Poisson's ratios are observed to be not affected by the interfacial stiffness while the predictions of transverse longitudinal and shear moduli are significantly influenced by interfacial stiffness.

Effect of Fiber Volume Fraction on the Stress Intensity Factors for Multi Layered Composites Under Arbitrary Anti-Plane Shear Loading

  • Kim, Sung-Ho;Lee, Kang-Yong;Joo, Sung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.920-927
    • /
    • 2000
  • A multi-layered orthotropic material with a center crack is subjected to an anti-plane shear loading. The problem is formulated as a mixed boundary value problem by using the Fourier integral transform method. This gives a Fredholm integral equation of the second kind. The integral equation is solved numerically and anti-plane shear stress intensity factors are analyzed in terms of the material orthotropy for each layer, number of layers, crack length to layer thickness and the order of the loading polynomial. Also, the case of monolithic and hybrid composites are investigated in terms of the local fiber volume fraction and the global fiber volume fraction.

  • PDF

Microstructural Morphology of Molded Thin Composites of Thermotropic Liquid Crystalline Polymer and Polyamide 6 (서모트로픽 액정폴리머와 폴리아미드6으로 성형된 얇은 복합재료의 미세구조형태)

  • Choe, Nak-Sam;Choe, Gi-Yeong;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1703-1711
    • /
    • 2000
  • Microstructural morphology of molded composites of thermotropic liquid crystalline polymer(LCP) and polyamide 6 (PA6) has been studied as a function of epoxy fraction. Injection-moulding of a thin composite plaque at a temperature below the melting point of the LCP fibrils by suing the extruded LCP/PA6 pellets produced multi-layered structures: 1) the surface skin layer with thickness of 65-120 ym exhibiting a transverse orientation, 2) the sub-skin layer with an orientation perpendicular to the surface skin, i.e. in the flow direction, 3) the core layer with arc-curved flow patterns. Similar microstructural orientations were observed in the respective layers for the composite plaques with different fractions of epoxy.

Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures (샌드위치 구조의 전자기파 흡수체 제작 및 전자기적 특성)

  • Park Ki-Yeon;Lee Sang-Eui;Han Jae-hung;Kim Chun-Gon;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.131-134
    • /
    • 2004
  • The object of this study is to design the Radar Absorbing Structures (RAS) having sandwich structures in the X-band $(8.2\~12.4GHz)$ frequencies. Glass fabric/epoxy composites containing conductive carbon blacks and carbon fabric/epoxy composites were used for the face sheets. Polyurethane (PU) foams containing multi­walled carbon nanotube (MWNT) were used for the core. Their permittivities in the X-band were measured using the transmission line technique. The reflection loss characteristics for multi-layered sandwich structures were calculated using the theory of transmission and reflection in a multi-layered medium. Three kinds of specimens were fabricated and their reflection losses in the X-band were measured using the free space technique. Experimental results were in good agreements with simulated ones in 10dB absorbing bandwidth.

  • PDF

Dielectric Properties of Epoxy/Organically Modified Layered Silicate Nanocomposites (에폭시/유기적으로 변경된 층상실리케이트가 충진 된 나노콤포지트의 유전특성)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.188-193
    • /
    • 2008
  • Epoxy/Organically Modified Layered Silicate Nanocomposites were prepared by dispersing synthetic layered silicate modified with alkyl ammonium ions. In the dispersing process, the organically modified layered silicate were mixed in epoxy resin with shearing, and aggregation of the silicate were removed by centrifugal separation after mixing epoxy resin and silicates. Micrographs taken by transmission electron microscopy(TEM) indicate that the nanocomposites have a mixed morphology including both parallel silicate layers and exfoliated silicate layers area, As the thermal properties, the glass transition temperature of the nanocomposites was shifted to a higher temperature($+6^{\circ}C$)than pure epoxy. Furthermore, dispersion of OMLS will prevented relative permittivity from increasing at a high temperature above the glass transition temperature.

Improving Gas Barrier Property of Polymer Based Nanocomposites Using Layer by Layer Deposition Method for Hydrogen Tank Liner

  • Lee, Suyeon;Han, Hye Seong;Seong, Dong Gi
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.121-126
    • /
    • 2022
  • Owing to advantages of polymeric materials for hydrogen tank liner like light-weight property and high specific strength, polymer based composites have gained much attention. Despite of many benefits, polymeric materials for fuel cell tank cause problems which is critical to applications as low gas barrier property, and poor processability when adding fillers. For these reasons, improving gas barrier property of polymer composites is required to study for expanding application fields. This work presents impermeable polymer nanocomposites by introducing thin barrier coating using layer by layer (LBL) deposition method. Also, bi-layered and quad-layered nanocomposites were fabricated and compared for identifying relationship between deposition step and gas barrier property. Reduction in gas permeability was observed without interrupting mechanical property and processability. It is discussed that proper coating conditions were suggested when different coating materials and deposition steps were applied. We investigated morphology, gas barrier property and mechanical properties of fabricated nanocomposites by FE-SEM, Oxygen permeation analyzer, UTM, respectively. In addition, we revealed the mechanism of barrier performance of LBL coating using materials which have high aspect ratio.

Preparation and Characterization of Biodestructive Nanocomposites by Melt Intercalation Method (용융혼합법을 이용한 생붕괴성 나노복합재의 제조 및 분석)

  • Lee, Su-kyung;Youn, Jae-Ryoun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.59-62
    • /
    • 2003
  • Nanocomposites are composite materials consisting of polymer matrix and layered silicate that are interacted in nanometer scale. Layered silicate based polymer nanocomposites have attracted considerable attention because of their excellent properties. Nanocomposites usually exhibit improved performance properties compared with conventional composites due to their unique phase morphology and improved interfacial properties. (omitted)

  • PDF