• 제목/요약/키워드: Layer transfer

검색결과 1,530건 처리시간 0.025초

난류 유동 하에서 덕트 내의 착상 (Frost Formation in a Straight Duct under Turbulent Flow)

  • 양동근;이관수
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1114-1121
    • /
    • 2003
  • A mathematical model considering the air side and the frost layer is presented to predict the frost layer growth. The standard k-$\varepsilon$ model for the air flow and the diffusion and energy equations for the frost layer are employed. The numerical results are compared with experimental data to validate the present model, and agree well with experimental data within a maximum error of 10%. The present model predicts well the frost properties and heat and mass transfer with respect to the frosting time. The variation of total heat transfer strongly depends on the operating condition, and has a similar trend to that of the sensible heat transfer. The frost properties along the flow direction are also investigated.

Laminar Convective Heat Transfer from a Horizontal Flat Plate of Phase Change Material Slurry Flow

  • Kim Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.779-784
    • /
    • 2005
  • This paper presents the theory of similarity transformations applied to the momentum and energy equations for laminar, forced, external boundary layer flow over a horizontal flat plate which leads to a set of non-linear, ordinary differential equations of phase change material slurry(PCM Slurry). The momentum and energy equation set numerically to obtain the non-dimensional velocity and temperature profiles in a laminar boundary layer are solved. The heat transfer characteristics of PCM slurry was numerically investigated with similar method. It is clarified that the similar solution method of Newtonian fluid can be used reasonably this type of PCM slurry which has low concentration. The data of local wall heat flux and convective heat transfer coefficient of PCM slurry are higher than those of water more than 150$\~$200$\%$, approximately.

전달행렬법을 이용한 다중 다공판 시스템의 흡음성능 예측 (Estimation of the Sound Absorption Performance for Multiple Layer Perforated Plate Systems by Transfer Matrix Method)

  • 이동훈;허성춘;권영필
    • 한국소음진동공학회논문집
    • /
    • 제12권9호
    • /
    • pp.709-716
    • /
    • 2002
  • A practical method of predicting the sound absorption coefficient for multiple perforated-plate sound absorbing system was developed using transfer matrix method. The proposed method was validated by comparing the calculated absorption coefficients of a single layer perforated plate with the values measured by the two-microphone impedance tube method for various porosity and spacing of the perforated plate. The developed transfer matrix method was further applied to estimate the multiple layer perforated plates and it is shown that the estimated absorption coefficients agree well with the measured values.

An Experimental Investigation of the Interfacial Condensation Heat Transfer in Steam/water Countercurrent Stratified Flow in a Horizontal Pipe

  • Chu, In-Cheol;Yu, Seon-Oh;Chun, Moon-Hyun;Kim, Byong-Sup;Kim, Yang-Seok;Kim, In-Hwan;Lee, Sang-Won
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.565-570
    • /
    • 1998
  • An interfacial condensation heat transfer phenomenon in a steam/water countercurrent stratified flow in a nearly horizontal pipe has been experimentally investigated. The present study has been focused on the measurement of the temperature and velocity distributions within the water layer. In particular, the water layer thickness used in the present work is large enough so that the turbulent mixing is limited and the thermal stratification is established. As a result, the thermal resistance of the water layer to the condensation heat transfer is increased significantly. An empirical correlation of the interfacial condensation heat transfer has been developed. The present correlation agrees with the data within $\pm$15%

  • PDF

냉각 평판에서 서리 성장 모델링 (Modeling for Frost Growth on a Cold Plate)

  • 양동근;이관수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1546-1551
    • /
    • 2004
  • This paper presents a mathematical model to predict the frost properties and heal and mass transfer within the frost layer formed on a cold plate. The laminar flow equations for the air-side are analyzed. and the empirical correlations of local frost properties are employed in order to predict the frost layer growth. The correlations of local frost density and effective thermal conductivity of frost layer, obtained from various experimental conditions, are derived as functions of various frosting parameters (Reynolds number, frost surface temperature, absolute humidity and temperature of moist air, cooling plate temperature, and frost density). The numerical results are compared with experimental data and the results of various models to validate the present model, and agree well with experimental data within a maximum error of 10%. The heat and mass transfer coefficients obtained from the numerical analyses are presented, as the results, it is found that the model for frost growth using the correlation of heat transfer coefficient without solving air flow have a limitation in its application.

  • PDF

구름거동에 미치는 은 입자 투여의 영향에 대한 실험적 고찰 (Effect of Silver Particle Introduction on Rolling Friction)

  • 양승호;공호성;윤의성;김대은
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.105-113
    • /
    • 2001
  • The effect of silver particle introduction on the rolling friction of AISI 52100 steel pairs has been investigated. Experiments were performed in dry conditions using a thrust bearing-type rolling test rig at a load range of 12 - 960 N and a sliding velocity range of 8 - 785 mm/sec with pure(99.99%) silver particles. Results showed that the introduced silver particles formed transfer layer, which protected virgin bearing surfaces and resulted in low rolling friction. By changing the quantity of silver particles, transitions in the rolling friction wear found. Results also showed that the variations in normal load and rolling speed also affected the rolling friction behavior. Analyses using SEM and EPMA showed that tile formation of transfer layer was mainly governed by the silver particle quantity, normal load and rolling speed, and this resulted in the different behavior of rolling friction. In this study, it was found that the low and stable rolling friction was resulted from the shakedown phenomena occurred at the silver transfer layer.

  • PDF

비대칭 급확대 관로 유동장 내의 열전달 해석에 수정된 경계층 방정식의 적용 가능성 추정 (Prediction of Heat Transfer in Asymmetric Sudden Expansion Flows by using the Modified Boundary Layer Equations)

  • 류명석;맹주성
    • 대한설비공학회지:설비저널
    • /
    • 제14권4호
    • /
    • pp.293-299
    • /
    • 1985
  • This paper describes an economical prediction procedure for heat transfer phenomenon through a channel containing an abrupt asymmetric expansion in flow cross-seetional area. Numerical solutions for the flow field are obtained by the finite difference numerical method applied to the modified boundary layer equations. Modified boundary energy equation is used to analyze heat transfer as modified boundary momentum equation. Predictions of the method compare very favorable with exprimental data. Results of this study by modified boundary layer equation are as follows : 1. The computation time required for the scheme is at least an order of magnitude less than for the numerical solution of the full Navier-stokes and Energy eguations. 2. In laminar flow, the maximum heat transfer occurs downstream of the reattachment point.

  • PDF

종방향 와동이 유체유동 및 열전달 특성에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Fluid Flow and Heat Transfer Characteristics by the Longitudinal Vortices)

  • 양장식;김은필
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.843-852
    • /
    • 2000
  • The flow characteristics and the heat transfer rate on a surface by interaction of a pair of vortices were studied experimentally. The test facility consisted of a boundary-layer wind tunnel with a vortex introduced into the flow by half-delta winglet protruding from the surface. In order to control the strength of the longitudinal vortices, the angles of attack of the vortex generators were varied from $\pm20\;degree\;to\;\pm45$ degree, but spacings between the vortex generators were fixed to 4 cm. The 3-dimensional mean velocity measurements were made using a five-hole pressure probe. Heat transfer measurements were made using the thermochromatic liquid to provide the local distribution of the heat transfer coefficient. By using the method mentioned above, the following conclusions were obtained from the present experiment. The boundary layer was thinned in the regions where the secondary flow was directed toward the wall and thickened where it was directed away from the wall. The peak augmentation of the local heat transfer coefficient occurred in the downwash region near the point of minimum boundary-layer thickness.

  • PDF

비정상 후류가 선형터빈익렬의 유동 및 열전달에 미치는 영향에 관한 연구 (Influence of the Unsteady Wake on the Flow and Heat Transfer in a Linear Turbine Cascade)

  • 윤순현;심재경;김동건
    • 대한기계학회논문집B
    • /
    • 제25권2호
    • /
    • pp.164-170
    • /
    • 2001
  • The influence of unsteady wake on the flow and heat transfer characteristics in a four-vane linear cascade was experimentally investigated. The unsteady wake was generated with four rotating rectangular plates located upstream of the cascade. Tested inlet Reynolds number based on chord length was set to 66,000 by controlling free-stream velocity. A hot-wire anemometer system was employed to measure turbulent velocity components. For the convective heat transfer coefficients measurement on turbine blade surface, thermochromic liquid crystal and gold film Intrex were used. It was found that the unsteady wake enhances the turbulent motion in the cascade passage and accordingly promotes the development and transition of boundary layer. It was found that the heat transfer coefficients on the blade surface increase as the plate rotating speed increases. However, the increasing of heat transfer coefficients is not significant in the case that Strouhal number is higher than 0.503.

주유동 맥동과 경계층 와류의 상호작용이 벽면 열전달에 미치는 영향 (Heat Transfer Characteristics of the Interaction Between Bulk Flow Pulsation and a Vortex Embedded in a Turbulent Boundary Layer)

  • 강새별;맹두진;이준식
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.381-388
    • /
    • 2001
  • Presented are heat data which describe the effect of interaction between bulk flow pulsations and a vortex embedded in a turbulent boundary layer. The pulsation frequencies are 3 Hz, 15 Hz and 30 Hz. A half delta wing with the same height as the boundary layer thickness is used to generate the vortex flow. The convection heat transfer coefficients on a constant heat-flux surface are measured by embedded 77 T-type thermocouples. Spanwise profiles of convection heat transfer coefficients show that upwash region of vortex flow is influenced by bulk flow pulsations. The local heat transfer coefficient increases approximately by 7 percent. The increase in the local change of convection heat transfer coefficient is attributed to the spanwise oscillatory motion of vortex flow especially at the low Strouhal number and to the periodic change of vortex size.