• Title/Summary/Keyword: Layer coefficient

Search Result 1,438, Processing Time 0.036 seconds

Optimization of μc-SiGe:H Layer for a Bottom Cell Application

  • Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.322.1-322.1
    • /
    • 2014
  • Many research groups have studied tandem or multi-junction cells to overcome this low efficiency and degradation. In multi-junction cells, band-gap engineering of each absorb layer is needed to absorb the light at various wavelengths efficiently. Various absorption layers can be formed using multi-junctions, such as hydrogenated amorphous silicon carbide (a-SiC:H), amorphous silicon germanium (a-SiGe:H) and microcrystalline silicon (${\mu}c$-Si:H), etc. Among them, ${\mu}c$-Si:H is the bottom absorber material because it has a low band-gap and does not exhibit light-induced degradation like amorphous silicon. Nevertheless, ${\mu}c$-Si:H requires a much thicker material (>2 mm) to absorb sufficient light due to its smaller light absorption coefficient, highlighting the need for a high growth rate for productivity. ${\mu}c$-SiGe:H has a much higher absorption coefficient than ${\mu}c$-Si:H at the low energy wavelength, meaning that the thickness of the absorption layer can be decreased to less than half that of ${\mu}c$-Si:H. ${\mu}c$-SiGe:H films were prepared using 40 MHz very high frequency PECVD method at 1 Torr. SiH4 and GeH4 were used as a reactive gas and H2 was used as a dilution gas. In this study, the ${\mu}c$-SiGe:H layer for triple solar cells applications was performed to optimize the film properties.

  • PDF

A Study on the Dielectric Breakdown voltage and Transparency of Dielectric Layer in AC PDP (AC PDP 유전층의 절연파괴 전압과 투명도에 관한 연구)

  • Park, Jeong-Hu;Lee, Seong-Hyeon;Kim, Gyu-Seop;Son, Je-Bong;Jo, Jeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.1
    • /
    • pp.39-44
    • /
    • 1999
  • The dielectric layers in AC plasma display panel(PDP) are essential to the discharge cell structure, because they protect metal electrodes from sputtering by positive ion bombarding in discharge plasma and form a sheath of wall charges which are essential to memory function of AC PDP. This layer should have high dielectric breakdown voltage, and also be transparent because the luminance of PDP is strongly correlated this layer. In this paper, we discussed the dielectric breakdown voltage and transparency of the dielectric layer under various conditions. As a result, on the $15\mum$ thickness, the minimum dielectric breakdown voltage was 435V and the transmission coefficient was about 80% after $570^{\circ}C$ firing process. It can be proposed that the resonable dielectric thickness in AC PDP is $15\mum$ because it has about 75V margin on the maximum applied voltage.

  • PDF

Dependence of $Cl_2$ Gas Reaction Time on Tribological Properties of TiC Derived Carbon Layer (염소가스 반응시간에 따른 TiC표면 탄소막의 Tribology 특성)

  • Lim, Dae-Soon;Bae, Heung-Taek;Jeong, Ji-Hoon;Na, Byung-Chul
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.20-24
    • /
    • 2009
  • TiC-derived carbon coatings have been synthesized at $600^{\circ}C$ temperature treatment with $H_2/Cl_2$ mixture gases. From Raman spectroscopy measurements, the modified layer was covered with carbon and the thick-ness of the layer was increased with increasing reaction time. And $I_D/I_G$ ratio was decreased with increasing reaction time. The superior tribological property was obtained from TiC reacted with $Cl_2$ gas for 2 hrs. And the tribological property measurements indicate that TiC-derived carbon layer has $0.9{\times}10_{-6}mm^3/Nm$ in wear coefficient and 0.13 in friction coefficient.

Analysis of key elements of single-layer dome structures against progressive collapse

  • Zhang, Qian;Huang, Wenxing;Xu, Yixiang;Cai, Jianguo;Wang, Fang;Feng, Jian
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.257-264
    • /
    • 2022
  • The analysis of the progressive collapse resistance of structures is a well-known issue among structural engineers. Large-span reticulated dome structures are commonly utilized in large public buildings, necessitating research into their progressive collapse resistance to assure user safety. The most significant part of improving the structural resilience of reticulated domes is to evaluate their key elements. Based on a stiffness-based evaluation approach, this work offers a calculating procedure for element importance coefficient. For both original and damaged structures, evaluations are carried out using the global stiffness matrix and the determinant. The Kiewitt, Schwedler, and Sunflower reticulated domes are investigated to explore the distribution characteristic of element importance coefficients in the single-layer dome structures. Moreover, the influences of the load levels, load distributions, geometric parameters and topological features are also discussed. The results can be regarded as the initial concept design reference for single-layer reticulated domes.

A Study on the Variation of the Coefficient of Leachate as Final Cover Systems in the Landfill (폐기물 매립지의 최종복토 구조에 따른 침출계수 변화에 관한 연구)

  • 임은진;이재영;최상일
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.2
    • /
    • pp.48-53
    • /
    • 2004
  • This study is objected to estimate the variation of the coefficient of leachate according to designs in landfill cover systems. Design (a) is the unsanitary landfill cover system with 50 cm soil. But Design (b), (c) are sanitary cover systems which are composed of soil top layer, drainage layer, barrier liner(Design (b): Geomembrane(1.5 mm) and compacted clay liner(30 cm), Design (c) compacted clay liner(45 cm)), gas venting layer. Quantity of leachate estimates Rational Method generally and depend on the coefficient of leachate, on one of the factors in Rational Method largely. The coefficient of leachate is defined as the leachate production ratio result from incident precipitation. To estimate the variation of the coefficient of leachate, the authors use HELP(Hydrologic Evaluation of Landfill Performance) Simulation and Pilot Test. As a result of HELP Simulation, the coefficient of leachate is 0.36∼0.42 in Design (a) and 0.03∼0.15 in Design (b), (c) according to designs in landfill cover systems and quality of barrier liner placement. These numerical values are similar to 0.13 with the coefficient of leachate in Pilot Test.

Estimation of Air Voids in Asphalt Mixtures Using Ground-Penetrating Radar (지표투과레이더를 이용한 아스팔트 혼합물의 공극률 예측에 관한 연구)

  • Kim, Je Won;Kim, Yeon Tae;Kim, Booil;Park, Hee Mun
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.55-61
    • /
    • 2016
  • PURPOSES : The objective of this study was to determine the relationship between the dielectric characteristics of asphalt mixtures and the air voids present in them using ground penetrating radar (GPR) testing. METHODS : To measure the dielectric properties of the asphalt mixtures, the reflection coefficient method and the approach based on the actual thickness of the asphalt layer were used. An air-couple-type GPR antenna with a center frequency of 1 GHz was used to measure the time for reflection from the asphalt/base layer interface. A piece of aluminum foil was placed at the interface to be able to determine the reflection time of the GPR signal with accuracy. An asphalt pavement testbed was constructed, and asphalt mixtures with different compaction numbers were tested. After the GPR tests, the asphalt samples were cored and their thicknesses and number of air voids were measured in the laboratory. RESULTS : It was found the dielectric constant of asphalt mixtures tends to decrease with an increase in the number of air voids. The dielectric constant values estimated from the reflection coefficient method exhibited a slight correlation to the number of air voids. However, the dielectric constant values measured using the approach based on the actual asphalt layer thickness were closely related to the asphalt mixture density. Based on these results, a regression equation to determine the number of air voids in asphalt mixtures using the GPR test method was proposed. CONCLUSIONS : It was concluded that the number of air voids in an asphalt mixture can be calculated based on the dielectric constant of the mixture as determined by GPR testing. It was also found that the number of air voids was exponentially related to the dielectric constant, with the coefficient of determination, $R^2$, being 0.74. These results suggest that the dielectric constant as determined by GPR testing can be used to improve the construction quality and maintenance of asphalt pavements.

Theoretical approach on the effective heat exchanger design using boundary layer theory (경계층 이론을 이용한 고효율 열교환기 설계를 위한 이론적 접근법)

  • Lee, Dong-Yeon;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5655-5660
    • /
    • 2012
  • The objective of this study is theoretically to suggest the effective heat exchanger design method using boundary layer analysis. The boundary layer formation and interruption on rectangular plate and round plate fins are explained and the heat transfer coefficients showed with the variation of the velocity and temperature boundary layer. In addition, the flow pattern on one plate fin surface considered as external flow and flow pattern between fins considered as internal flow. As a result, theoretical method for the boundary layer interruption avoidance is suggested and the heat transfer coefficient of the round plate fin was higher than that of the rectangular plate fin because of the less thermal and velocity boundary layer thickness except the centerline.

Effect of Seed-layer thickness on the Crystallization and Electric Properties of SBN Thin Films. (SBN 박막의 결정화 및 전기적 특성에 관한 씨앗층 두께의 영향)

  • Jang, Jae-Hoon;Lee, Dong-Gun;Lee, Hee-Young;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.271-274
    • /
    • 2003
  • [ $Sr_xBa_{1-x}Nb_2O_6$ ] (SBN, $0.25{\leq}x{\leq}0.75$) ceramic is a ferroelectric material with tetragonal tungsten bronze (TTB) type structure, which has a high pyroelectric coefficient and a nonlinear electro-optic coefficient value. In spite of its advantages, SBN has not been investigated well compared to other ferroelectric materials with perovskite structure. In this study, SBN thin film was manufactured by ion beam sputtering technique using the prepared SBN target in $Ar/O_2$ atmosphere. SBN30 thin films of different thickness were pre-deposited as a seed layer on $Pt(100)/TiO_2/SiO_2/Si$ substrate followed by SBN60 deposition up to $4500\;{\AA}$ in thickness. As-deposited SBN60/SBN30 layer was heat-treated at different temperatures of 650, 700, 750, and $800\;^{\circ}C$ in air, respectively, The crystallinity and orientation behavior as well as electric properties of SBN60/SBN30 multi-layer were examined. The deposited layer was uniform and the orientation was shown primarily along (001) plane from XRD pattern. There was difference in the crystal structure with heat-treatment temperature, and the electric properties depended on the heating temperature and the seed-layer thickness. In electric properties of Pt/SBN60/SBN30/Pt thin film capacitor prepared, the remnant polarization (2Pr) value was $15\;{\mu}C/cm^2$, the coercive field (Ec) 65 kV/cm, and the dielectric constant 1492, respectively.

  • PDF

Study on the Water Consumption of Chinese Cabbage by Floating Lysimeter (Floating Lysimeter 에 의한 가을배추의 소비수량 조사연구)

  • 김시원;김선주;김준석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.2
    • /
    • pp.23-29
    • /
    • 1987
  • This study was fulfilled by the floating lysimeter method at the experimental farm of Kon-Kuk University from August to November of 1986 to investigate the amount of evapotranspiration by the growing periods, evapotranspiration ratio, amount of watering per one time, days of intermission, soil moisture extraction pattern and crop coefficient of the Chinese cabbage cultivated in the sandy loam soil at the watering point of pF2.O. The results obtained are summarized as follows: 1.The total evapotranspiration during the growing period was 267.2mm, which was 3. 99mm by daily average, and the maximum evapotranspiration showed in the mid ten days of September with the value of 5.81mm I day. 2.The evapotranspiration ratio by the growing stages increased from the last ten days of September and showed maximum in the beginning of October, and the average evapotranspiration ratio was 1.4. 3.The days of watering intermission at the watering point of pF2.O was 2.4 days, and the average yield per plant was 3,228 g. 4. The soil moisture extraction pattern in the initial stage was 78.9 % in the 1st and 2nd soil layer and 21.1 % in the 3rd and 4th layer, and the mid-season stage, the moisture extraction proportion of the under layer accounted for 38.8 % which showed that the root elongated to the lowest soil layer. 5.The average crop coefficient(Kc) of the tested crop during the growing period was 0.67 by Penman equation and 2.36 by Pan Evaporation equation, which showed high difference by the calculation methods, and the changes of crop coefficient by the growing stages by Penman equation was favorable than those calculated by other met-hods.

  • PDF