• Title/Summary/Keyword: Layer Performance

Search Result 5,371, Processing Time 0.036 seconds

The effect of Nafion$^{(R)}$ ionomer content/distribution and relative humidities on PEMFC performances of MEAs prepared by a CCM spraying method

  • Kim, Kun-Ho;Jeon, Yoo-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.87.1-87.1
    • /
    • 2011
  • For commercial applications, MEA development must be optimized in order to achieve high performance and low cost. There are many factors that affect the performance of MEA. Especially, the optimization of the method for preparing catalyst layer has great effect on the performance of MEA. Various methods have been used to prepare the catalyst layer of MEA. Among them, spraying method has a merit in that catalysis lay can be prepared with very flexible changes in catalyst layer as well as in the solvent composition of catalyst ink. In addition, in order to reduce the time required for manufacturing catalyst layer, an effort has been made to change the nozzle size and injection pressure of spray system. Further, the operation condition of spray system was changed in various ways in an effort to prepare optimum catalyst layer of MEA. Having optimized the operation condition of spraying system, comprehensive and diverse experiments were carried out concerning various factors that affect the performance of MEA. The present research report describes the results of more sub-categorized and more detailed experiments about the important factors (Nafion$^{(R)}$ ionomer, Relative humidity) which have been shown in previous experiments to exert greater effect on the performance of MEA.

  • PDF

The Effect of Electron Injection Layer in Organic Electroluminescence Device Efficiency (전자 주입층이 유기EL소자 효율에 미치는 영향)

  • Choi, Kyung-Hoon;Sohn, Byung-Chung;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.297-301
    • /
    • 2002
  • We investigated the effect of electron injection layer on the performance of organic light emitting devices (OLEDs). As an electron injection layer, the quinolate metal complexes were used. We optimized the device efficiency by varying the thickness of the quinolate metal complexes layer. The device with 1 nm of the quinolate metal complexes layer showed significant enhancement of the device performance and device lifetime. We also compared the effect of 8-hydroxyquinolinolatolithium (Liq) with that of bis(8-quinolinolato)-zinc ($Znq_{2}$) and 8-hydroxyquinolinolatosodium (Naq) as an electron injection layer. As a result, Liq is considered as a better materials for the electron injection layer than $Znq_{2}$ and Naq.

High performance of inverted polymer solar cells

  • Lee, Hsin-Ying;Lee, Ching-Ting;Huang, Hung-Lin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.61.2-61.2
    • /
    • 2015
  • In the past decades, green energy, such as solar energy, wind power, hydropower, biomass energy, geothermal energy, and so on, has been widely investigated and developed to solve energy shortage. Recently, organic solar cells have attracted much attention, because they have many advantages, including low-cost, flexibility, light weight, and easy fabrication [1-3]. Organic solar cells are as a potential candidate of the next generation solar cells. In this abstract, to improve the power conversion efficiency and the stability, the inverted polymer solar cells with various structures were developed [4-6]. The novel cell structures included the P3HT:PCBM inverted polymer solar cells with AZO nanorods array, with pentacene-doped active layer, and with extra P3HT interfacial layer and PCBM interfacial layer. These three difference structures could respectively improve the performance of the P3HT:PCBM inverted polymer solar cells. For the inverted polymer solar cells with AZO nanorods array as the electronic transportation layer, by using the nanorod structure, the improvement of carrier collection and carrier extraction capabilities could be expected due to an increase in contact area between the nanorod array and the active layer. For the inverted polymer solar cells with pentacene-doped active layer, the hole-electron mobility in the active layer could be balanced by doping pentacene contents. The active layer with the balanced hole-electron mobility could reduce the carrier recombination in the active layers to enhance the photocurrent of the resulting inverted polymer solar cells. For the inverted polymer solar cells with extra P3HT and PCBM interfacial layers, the extra PCBM and P3HT interfacial layers could respectively improve the electron transport and hole transport. The extra PCBM interfacial layer served another function was that led more P3HT moving to the top side of the absorption layer, which reduced the non-continuous pathways of P3HT. It indicated that the recombination centers could be further reduced in the absorption layer. The extra P3HT interfacial layer could let the hole be more easily transported to the MoO3 hole transport layer. The high performance of the novel P3HT:PCBM inverted polymer solar cells with various structures were obtained.

  • PDF

A Study on the Control of Recognition Performance and the Rehabilitation of Damaged Neurons in Multi-layer Perceptron (다층 퍼셉트론으 인식력 제어와 복원에 관한 연구)

  • 박인정;장호성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.2
    • /
    • pp.128-136
    • /
    • 1991
  • A neural network of multi layer perception type, learned by error back propagation learning rule, is generally used for the verification or clustering of similar type of patterns. When learning is completed, the network has a constant value of output depending on a pattern. This paper shows that the intensity of neuron's out put can be controlled by a function which intensifies the excitatory interconnection coefficients or the inhibitory one between neurons in output layer and those in hidden layer. In this paper the value of factor in the function to control the output is derived from the know values of the neural network after learning is completed And also this paper show that the amount of an increased neuron's output in output layer by arbitary value of the factor is derived. For the applications increased recognition performance of a pattern than has distortion is introduced and the output of partially damaged neurons are first managed and this paper shows that the reduced recognition performance can be recovered.

  • PDF

Electrochemical Performance of Carbon Coated LiMn2O4 Nanoparticles using a New Carbon Source

  • Park, Jin Seo;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.139-145
    • /
    • 2016
  • The electrochemical performance of carbon-coated LiMn2O4 nanoparticles was reported. The polydopamine layer was introduced as a new organic carbon source. The carbon layer was homogeneously coated onto the surface of the LiMn2O4 nanoparticles because the polymerization process from the dopamine solution (in a buffer solution, pH 8.5) easily and uniformly formed a polydopamine layer. The phase integrity of LiMn2O4 deteriorated during the carbon-coating process due to oxygen loss, although the main structure was maintained. The carbon-coated sample led to improved rate capability because of the effect of the conductive carbon layer. Moreover, the carbon coating also enhanced the cyclic performance. This indicates that the carbon layer may suppress unwanted side reactions with the electrolytes and compensate for the low electronic conductivity of the pristine LiMn2O4.

Studies on the Characteristics of the Catalyst Layer of the PEMFC Electrode (고분자전해질용 연료전지의 전극 촉매중 특성에 관한 연구)

  • Sridhar, Parthasarathi;Ihm, Jae-Wook;Yu, Hyung-Kyun;Ryu, Ho-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.65-67
    • /
    • 2003
  • The present paper highlights on the need to understand the correlation of the characteristics of the catalyst layer with the performance of the polymer electrolyte membrane fuel cell (PEMFC). This paper deals with the correlation of the platinum loading in the catalyst layer and the performance of the polymer electrolyte membrane fuel cell and also the correlation of the required hydrophilicity/hydrophobicity in the catalyst layer to get the optimum performance under given operating conditions.

Performance Analysis of Layer Pruning on Sphere Decoding in MIMO Systems

  • Karthikeyan, Madurakavi;Saraswady, D.
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.564-571
    • /
    • 2014
  • Sphere decoding (SD) for multiple-input and multiple-output systems is a well-recognized approach for achieving near-maximum likelihood performance with reduced complexity. SD is a tree search process, whereby a large number of nodes can be searched in an effort to find an estimation of a transmitted symbol vector. In this paper, a simple and generalized approach called layer pruning is proposed to achieve complexity reduction in SD. Pruning a layer from a search process reduces the total number of nodes in a sphere search. The symbols corresponding to the pruned layer are obtained by adopting a QRM-MLD receiver. Simulation results show that the proposed method reduces the number of nodes to be searched for decoding the transmitted symbols by maintaining negligible performance loss. The proposed technique reduces the complexity by 35% to 42% in the low and medium signal-to-noise ratio regime. To demonstrate the potential of our method, we compare the results with another well-known method - namely, probabilistic tree pruning SD.

Performance Enhancement of Organic Light-emitting Diodes with an Electron-transport Layer of Bathocuproine

  • Honga, Jin-Woong;Guo, Yi-Wei;Shin, Jong-Yeol;Kim, Tae Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.37-40
    • /
    • 2016
  • Performance enhancement of organic light-emitting diodes (OLEDs) is investigated in a device structure of ITO/TPD/Alq3/LiF/Al and ITO/TPD/Alq3/BCP/LiF/Al. Here, bathocuproine (BCP) is used as an electron-transport layer. Current density-voltage-luminance characteristics of the OLEDs show that the performance of the device is better with BCP layer than without BCP layer. The current density, luminance, luminous efficiency, and external-quantum efficiency are improved by approximately 22%, 50%, 2%, and 18%, respectively. Since the BCP layer lowers the electron energy barrier, electron transport is facilitated and the movement of hole is blocked as the applied voltage increases. This results in an increased recombination rate of holes and electrons.

Cross-layer Design of Rate and Quality Adaptation Schemes for Wireless Video Streaming

  • Lee, Sun-Hun;Chung, Kwang-Sue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.324-340
    • /
    • 2010
  • Video streaming service over wireless networks is a challenging task because of the changes in the wireless channel conditions that can occur due to interference, fading, and station mobility. To provide an efficient wireless video streaming service, the rate adaptation scheme should improve wireless node performance and channel utilization. Moreover, the quality adaptation scheme should be considered at the streaming application. To meet these requirements, we propose a new cross-layer design for video streaming over wireless networks. This design includes the rate and quality adaptation schemes. The rate adaptation scheme selects the optimal transmission mode and resolves the performance anomaly problem. Based on performance improvement by the proposed rate adaptation scheme, our quality adaptation scheme improves the quality of video streaming. Through performance evaluations, we prove that our cross-layer design improves the wireless channel utilization and the quality of video streaming.

Comparison of the Effect of Interpolation on the Mask R-CNN Model

  • Young-Pill, Ahn;Kwang Baek, Kim;Hyun-Jun, Park
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.17-23
    • /
    • 2023
  • Recently, several high-performance instance segmentation models have used the Mask R-CNN model as a baseline, which reached a historical peak in instance segmentation in 2017. There are numerous derived models using the Mask R-CNN model, and if the performance of Mask R-CNN is improved, the performance of the derived models is also anticipated to improve. The Mask R-CNN uses interpolation to adjust the image size, and the input differs depending on the interpolation method. Therefore, in this study, the performance change of Mask R-CNN was compared when various interpolation methods were applied to the transform layer to improve the performance of Mask R-CNN. To train and evaluate the models, this study utilized the PennFudan and Balloon datasets and the AP metric was used to evaluate model performance. As a result of the experiment, the derived Mask R-CNN model showed the best performance when bicubic interpolation was used in the transform layer.