• Title/Summary/Keyword: Layer Growth

Search Result 2,515, Processing Time 0.029 seconds

The Study of Low Temperature $\muC-Si/CaF_2$/glass Film Growth using Buffer layer (Buffer layer 를 이용한 저온 $\muC-Si/CaF_2$/glass 박막성장연구)

  • 김도영;안병재;임동건;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.589-592
    • /
    • 1999
  • This paper describes direct $\mu$C-Si/CaF$_2$/glass thin film growth by RPCVD system in a low temperature for thin film transistor (TFT), photovoltaic devices. and sensor applications. Experimental factors in a low temperature direct $\mu$ c-Si film growth are presented in terms of deposition parameters: SiH$_4$/H$_2$ ratio, chamber total pressure, substrate temperature, rf power, and CaF$_2$ buffer layer. The structural and electrical properties of the deposited films were studied by means of Raman spectroscopy, I-V, L-I-V, X-ray diffraction analysis and SEM. we obtain a crystalline volume fraction of 61%, preferential growth of (111) and (220) direction, and photosensitivity of 124. We achieved the improvement of crystallinity and electrical property by using the buffer layers of CaF$_2$ film.

  • PDF

Selective Atomic Layer Deposition of Co Thin Films Using Co(EtCp)2 Precursor (Co(EtCp)2프리커서를 사용한 Co 박막의 선택적 원자층 증착)

  • Sujeong Kim;Yong Tae Kim;Jaeyeong Heo
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.163-169
    • /
    • 2024
  • As the limitations of Moore's Law become evident, there has been growing interest in advanced packaging technologies. Among various 3D packaging techniques, Cu-SiO2 hybrid bonding has gained attention in heterogeneous devices. However, certain issues, such as its high-temperature processing conditions and copper oxidation, can affect electrical properties and mechanical reliability. Therefore, we studied depositing only a heterometal on top of the Cu in Cu-SiO2 composite substrates to prevent copper surface oxidation and to lower bonding process temperature. The heterometal needs to be deposited as an ultra-thin layer of less than 10 nm, for copper diffusion. We established the process conditions for depositing a Co film using a Co(EtCp)2 precursor and utilizing plasma-enhanced atomic layer deposition (PEALD), which allows for precise atomic level thickness control. In addition, we attempted to use a growth inhibitor by growing a self-assembled monolayer (SAM) material, octadecyltrichlorosilane (ODTS), on a SiO2 substrate to selectively suppress the growth of Co film. We compared the growth behavior of the Co film under various PEALD process conditions and examined their selectivity based on the ODTS growth time.

Growth behavior on initial layer of ZnO:P layers grown by magnetron sputtering with controlled by $O_2$ partial pressure

  • Kim, Yeong-Lee;An, Cheol-Hyeon;Bae, Yeong-Suk;Kim, Dong-Chan;Jo, Hyeong-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.28.1-28.1
    • /
    • 2009
  • The superior properties of ZnO such as high exciton binding energy, high thermal and chemical stability, low growth temperature and possibility of wet etching process in ZnO have great interest for applications ranging from optoelectronics to chemical sensor. Particularly, vertically well-aligned ZnO nanorods on large areas with good optical and structural properties are of special interest for the fabrication of electronic and optical nanodevices. Currently, low-dimensional ZnO is synthesized by metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), thermal evaporation, and sol.gel growth. Recently, our group has been reported about achievement the growth of Ga-doped ZnO nanorods using ZnO seed layer on p-type Si substrate by RF magnetron sputtering system at high rf power and high growth temperature. However, the crystallinity of nanorods deteriorates due to lattice mismatch between nanorods and Si substrate. Also, in the growth of oxide using sputtering, the oxygen flow ratio relative to argon gas flow is an important growth parameter and significantly affects the structural properties. In this study, Phosphorus (P) doped ZnO nanorods were grown on c-sapphire substrates without seed layer by radio frequency magnetron sputtering with various argon/oxygen gas ratios. The layer change films into nanorods with decreasing oxygen partial pressure. The diameter and length of vertically well-aligned on the c-sapphire substrate are in the range of 51-103 nm and about 725 nm, respectively. The photoluminescence spectra of the nanorods are dominated by intense near band-edge emission with weak deep-level emission.

  • PDF

Formation and Growth of Epitaxial $CoSi_2$ Layer by Reactive Chemical Vapor Deposition (반응성 화학기상증착법을 이용한 에피택셜 $CoSi_2$ 박막의 형성 및 성장에 관한 연구)

  • Lee, Hwa-Seong;Lee, Hui-Seung;An, Byeong-Tae
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.738-741
    • /
    • 2000
  • Univorm epitaxial $CoSi_2$layers have been grown in situ on a (100) Si substrate at temperatures near$ 600^{\circ}C$ by reactive chemical vapor deposition of cyclopentadienyl dicarbonyl cobalt, (Co(η(sup)5-C(sub)5H(sub)5) ($CO_2$). The growth kinetics of an epitaxial $CoSi_2$layer on al Si(100) substrate was investigated at temperatures ranging from 575 to $650^{\circ}C$. In initial deposition stage, plate-like discrete $CoSi_2$spikes were nucleated along the <111> directions in (100) Si substrate with a twinned structure. The discrete $CoSi_2$plates with both {111} and (100) planes grew into an epitaxial layer with a flat interface on (100) Si. For epitaxial $CoSi_2$growth on (100) Si, the activation energy of the parabolic growth was found to be 2.82 eV. The growth rate seems to be controlled by the diffusion of Co through the $CoSi_2$layer.

  • PDF

Case Study of Variations in the Tropical Atmospheric Boundary Layer According to the Surface Conditions (지표 조건에 따른 열대 대기경계층 변화의 사례 연구)

  • Byoung-Hyuk Kwon
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.337-342
    • /
    • 2001
  • The Rondonia Boundary Layer Experiment (RBLE-II) was conceived to collect data the atmospheric boundary layer over two representative surface in the Amazon region of Brazil; tropical forest and a deforested, pasture area. The present study deals with the observations of atmospheric boundary layer growth and decay. Although the atmospheric boundary layer measurements made in RBLE-II were not made simultaneously over the two different surface types, some insights can be gained from analysing and comparing with their structure. The greater depth of the nocturnal boundary layer at the forest site may be due to influence of mechanical turbulence. The pasture site is aerodynamically smoother and so the downward turbulent diffusion will be much pasture than over the forest. The development of the convective boundary layer is stronger over the pasture than over the forest. The influence of the sensible heat flux is important but may be not enough to explain the difference completely. It seems that energy advection may occur from the wet and colder(forest) to the dry and warmer area(pasture), rapidly breaking up the nocturnal inversion. Such advection can explain the abrupt growth of the convective boundary layer at the pasture site during the early morning.

  • PDF

Effect of Casing Layer on Growth Promotion of the Edible Mushroom Pleurotus ostreatus

  • Cho, Young-Sub;Weon, Hang-Yeon;Joh, Jung-Ho;Lim, Jong-Hyun;Kim, Kyung-Yun;Son, Eun-Suk;Lee, Chang-Soo;Cho, Bong-Gum
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.40-44
    • /
    • 2008
  • Various bacteria were isolated from the casing layer soil of the culture bed of P. ostreatus and their role in fruiting body induction of the edible mushroom, P. ostreatus, was investigated. Analysis of the bacterial community isolated from the casing layer soil revealed that the composition of genera and number of cultivable bacteria were different for each sterilizing treatment. Bordetella was predominant in the bulk soil whereas Flavobacterium was predominant after sterilization of the casing layer soil. Fluorescent Pseudomonas was predominant in the non-sterilized casing layer soil. Total number of the bacterial genera in the casing layer soil was higher than that in the bulk soil. In particular, an increase in the fluorescent Pseudomonas population was observed in the non-sterilized casing layer accompanied by induction of fruiting body and enhanced mushroom production yield. The results suggested that specific bacterial populations in the casing layer play an important role in the formation of primodia and the development of basidiome in P. ostreatus.

Amorphous Cr-Ti Texture-inducing Layer Underlying (002) Textured bcc-Cr alloy Seed Layer for FePt-C Based Heat-assisted Magnetic Recording Media

  • Jeon, Seong-Jae;Hinata, Shintaro;Saito, Shin
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.35-39
    • /
    • 2016
  • $Cr_{100-x}Ti_x$ amorphous texture-inducing layers (TIL) were investigated to realize highly (002) oriented $L1_0$ FePt-C granular films through hetero-epitaxial growth on the (002) textured bcc-$Cr_{80}Mn_{20}$ seed layer (bcc-SL). As-deposited TILs showed the amorphous phase in Ti content of $30{\leq}x(at%){\leq}75$. Particularly, films with $40{\leq}x{\leq}60$ kept the amorphous phase against the heat treatment over $600^{\circ}C$. It was found that preference of the crystallographic texture for bcc-SLs is directly affected by the structural phase of TILs. (002) crystallographic texture was realized in bcc-SLs deposited on the amorphous TILs ($40{\leq}x{\leq}70$), whereas (110) texture was formed in bcc-SLs overlying on crystalline TILs (x < 30 and x > 70). Correlation between the angular distribution of (002) crystal orientation of bcc-SL evaluated by full width at half maximum of (002) diffraction (FWHM) and a grain diameter of bcc-SL indicated that while the development of the lateral growth for bcc-SL grain reduces FWHM, crystallization of amorphous TILs hinders FWHM. $L1_0$ FePt-C granular films were fabricated under the substrate heating process over $600^{\circ}C$ with having different FWHM of bcc-SL. Hysteresis loops showed that squareness ($M_r/M_s$) of the films increased from 0.87 to 0.95 when FWHM of bcc-SL decreased from $13.7^{\circ}$ to $3.8^{\circ}$. It is suggested that the reduction of (002) FWHM affects to the overlying MgO film as well as FePt-C granular film by means of the hetero-epitaxial growth.

Thin Film Growth and Evaluation Method for Conventional Co-Cr Based Perpendicular Magnetic Recording Media: Problems and New Solutions

  • Saito, Shin;Hoshi, Fumikazu;Hasegawa, Daiji;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.115-125
    • /
    • 2002
  • We proposed a novel method to evaluate the magnetic properties of the initial layer and the columnar structure separately for CoCr-based perpendicular recording media. We show that the thickness of the initial layer and the intrinsic magnetocrystalline anisotropy of columnar structure can be quantitatively evaluated using the plotted product of perpendicular anisotropy to magnetic film thickness versus magnetic film thickness ($K_{u{\bot}}^{ex{p.}}$ $\times$ d$_{mag.}$ vs. d$_{mag.}$ plot). Based on the analyses, it is found that: (1) compared with CoCrPtTa media, CoCrPtB media have relatively thin initial layer, and have fine grains with homogeneous columnar structure with c-plane crystallographic orientation; (2) CoCrPtB media can be grown epitaxially on Ru or CoCr/C intermediate layer, and as the result, the magnetic properties of the media within thin thickness region of d$_{mag.}$ $\leq$ 20 nm is significantly improved; (3) the key issue of material investigation for CoCr-based perpendicular recording media will be focused on how to fabricate c-plane-oriented columnar grains well isolated with nonmagnetic substance in epitaxial-growth media, while maintaining the thermal stability of the media.

Microstructural Analysis of Epitaxial Layer Defects in Si Wafer

  • Lim, Sung-Hwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.645-648
    • /
    • 2010
  • The structure and morphology of epitaxial layer defects in epitaxial Si wafers produced by the Czochralski method were studied using focused ion beam (FIB) milling, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Epitaxial growth was carried out in a horizontal reactor at atmospheric pressure. The p-type Si wafers were loaded into the reactor at about $800^{\circ}C$ and heated to about $1150^{\circ}C$ in $H_2$. An epitaxial layer with a thickness of $4{\mu}m$ was grown at a temperature of 1080-$1100^{\circ}C$. Octahedral void defects, the inner walls of which were covered with a 2-4 nm-thick oxide, were surrounded mainly by $\{111\}$ planes. The formation of octahedral void defects was closely related to the agglomeration of vacancies during the growth process. Cross-sectional TEM observation suggests that the carbon impurities might possibly be related to the formation of oxide defects, considering that some kinds of carbon impurities remain on the Si surface during oxidation. In addition, carbon and oxygen impurities might play a crucial role in the formation of void defects during growth of the epitaxial layer.

Evaluation of Degradation Characteristics of Thermal Barrier Coating on Gas Turbine Blades

  • Jung, Yongchan;Kim, Mintae;Lee, Juhyeung;Ahn, Jamin;Kim, Kihong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.273-278
    • /
    • 2016
  • In order to evaluate the lifespan of high-temperature parts with thermal barrier coating in gas turbines used for power generation, this study was performed on an 80 MW-class gas turbine exceeding 24 k equivalent operating hours. Degradation characteristics were evaluated by analyzing the YSZ (Yttria Stabilized Zirconia) top coat, which serves as the thermal barrier coating layer, the NiCrAlY bond coat, and interface layers. Microstructural analysis of the top, middle, and bottom sections showed that Thermal Growth Oxide (TGO) growth, Cr precipitate growth within the bond coat layer, and formation of diffusion layer occur actively in high-temperature sections. These microstructural changes were consistent with damaged areas of the thermal barrier coating layer observed at the surface of the used blade. The distribution of Cr precipitates within the bond coat layer, in addition to the thickness of TGO, is regarded as a key indicator in the evaluation of degradation characteristics.