• Title/Summary/Keyword: Lay-up Direction

Search Result 21, Processing Time 0.03 seconds

Friction and Wear Characteristics of Carbon Fiber Reinforced Composites against Lay-up Orientation (CFRP 복합재의 적층방향에 대한 마찰 및 마모 특성)

  • Koh, S.W.;Choi, Y.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.57-64
    • /
    • 2005
  • This paper is the study on dry sliding wear behavior of carbon fiber reinforced epoxy matrix composites against lay-up orientation. Tests were investigated on the effect of the lay-up orientation, fiber sliding direction, load and sliding velocity when circumstance keep continuously at $21^{\circ}C$, 60%RH. Pin-on-disk dry sliding wear tests for each experimental condition were carried out with a carbon fiber reinforced plastic pin on stainless steel disk in order to search the friction and wear characteristics. The wear rates and friction coefficients against the stainless steel counterpart were experimentally determined and the wear mechanisms were microscopically observed. The effect on friction and wear behavior are observed differently, according to various conditions. When sliding took place against counterpart, the highest wear resistance and the lowest friction coefficient were observed in the $[0]_{24s}$ lay-up orientation at anti-parallel direction.

  • PDF

Tribological Properties of Laminated Fiber Orientation in Carbon Fiber/Epoxy Composites for Reflecting Material of the Electromagnetic Wave (전자파 반사재료로 사용되는 탄소섬유/에폭시 복합재료의 적층 탄소섬유 방향성이 마찰특성에 미치는 영향)

  • Chun, Sang-Wook;Gimm, Youn-Myoung;Kang, Ho-Jong
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.778-783
    • /
    • 1999
  • The effect of carbon fiber orientation on the tribological properties of carbon fiber/epoxy composites used as a reflecting material for the electromagnetic wave has been investigated. It was found that the carbon fiber/epoxy composite which slides normal to prepreg lay-up direction had less friction and wear that those slides parallel to prepreg fiber lay-up direction due to the increase of delamination between carbon fiber and epoxy. Composite with unidirectional orientation($0/0^{\circ}$) had higher tribological properties than those with multidirectional orientation($0/45/90/-45^{\circ}$ and $0/90^{\circ}$) when the sliding direction was normal to prepreg lay-up direction. This was caused by the debonding between carbon fiber and epoxy which is proportional to contact area between the sliding surface and carbon fiber. Opposite results have been found when the sliding direction was parallel to prepreg lay-up direction due tot he tensile force applied on carbon fiber. In addition, it was shown that wear factor increased with increasing sliding velocity but the friction coefficient did not depend upon the sliding velocity.

  • PDF

Dynamic Crush Energy Absorption Characteristics of the Laminated Composite Box Tubes (섬유강화 복합재료 Box Tube의 동적 충격에너지 흡수거동)

  • Kang, S.C.;Jun, W.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.118-126
    • /
    • 1993
  • Static and dynamic crushing behaviors of composite box tube show the difference with those of metal tube. This paper investigates the characteristics of static and dynamic crushing test which were conducted to characterize the energy absorption and collapse mode of composite box tubes. Sixteen kinds of tube specimens were fabricated from[0/90] woven Glass/Epoxy fabric and autoclave cured. Axial crushing tests were performed using Instron and Dynatup Impact Tester. It is shown that collapse mode and energy absorption capacity can vary according to the aspect ratio, length, loading rate, lay-up direction of fabric, and trigger geometry of the composite box tube.

  • PDF

Tribological Properties of Carbon/PEEK Composites

  • Yoon, Sung-Won;Kim, Yun-Hae;Lee, Jin-Woo;Kim, Han-Bin;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.3
    • /
    • pp.142-146
    • /
    • 2013
  • In this study, the effect of Carbon/PEEK composites on the tribological properties has been investigated. Also, its validity has been tested in the capacity of alternative materials of the Ti-based materials used for artificial hip joint. Moreover, this work evaluated the mechanical properties according to the fiber ply orientation, along with the fractured surfaces of the carbon/PEEK composites. The composites with a unidirectional orientation had higher tribological properties than those with a multidirectional orientation. This was caused by the debonding between the carbon fiber and the PEEK, which was proportional to the contact area between the sliding surface and the carbon fiber. The friction test results showed that there were no significant differences in relation to the fiber ply orientation. However, the friction properties of the carbon/PEEK composites were higher than those of the carbon/epoxy composites. In addition, the results showed that a composite that slid in a direction normal to the prepreg lay-up direction had a smaller friction coefficient than one that slid in a direction parallel to the prepreg lay-up direction.

A Study of Property F.R.P Structure Strength According to the Direction of Lay-up in the Small Ship (적층 방향에 따른 F.R.P 구조강도특성에 관한 연구)

  • 고재용;배동균;윤순동
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.101-105
    • /
    • 2002
  • FRP(Fiber glass reinforced plastics) is compound with materials, which are created to combine each other materials, of which nature of mechanical and chemical are different. Even though the weight and the thickness are identic, its physical figure of characteristic changes with consisting of lay-up and work situation. It is also a method of creating after manufacturing of mould. It has feature that manufacturing of FRP runs parallel design of material with design of structure simultaneously. The rule of FRP structure is distinguished from the length of a ship and it is hard to catch the feature of structure mechanics due to identical formula and figure used for it regardless of the shape of a ship or the speed. This studying, basing on a small FRP ship, will show te fundamental data needed to design of structure analysing the feature of intensity with direction, the method of Lay-up, and the characteristic of materials of FRP.

  • PDF

우주급 경통 열-흡습 설계

  • Lee, Deog-Gyu
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.108-113
    • /
    • 2005
  • Strucutral and hygrothermal analysis for a composite tube is carried out in this study, that provides critical parameters for the design of a highly dimensionally stable space telescope. Carpet plots for laminate effective engineering constants are generated and used for the best tube lay-ups with high elastic modulus and highly insensitive to thermal and moisture expansion, which is essential for maintaining optical alignment of opto-mechanical system under random force applied during a launch campaign and orbital thermal load. Despace in the longitudinal direction under hygrothermal load of the tubes constructed with the selected lay-ups is calculated for the validation of lay-up designs on the dimensionalstability. Dynamic analysis is also carried out to feature the resonant behaviour. A zig-zag triangular element accurately representing through thickness stress variations for laminated structures is developed in this study and incorporated into the structural and hygrothermal analysis.

  • PDF

Studies on the Effect of Soil Conservation According to the Direction of Furrows in the Slope Land. (경사지밭에있어 이랑방향이 농지보전에 미치는 영향)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.3
    • /
    • pp.1719-1723
    • /
    • 1969
  • In this country, farmers lay out furrows in the direction which is considered by their own judgement to be convenient for cultivation without paying much attention for soil erosion. The direction of furrow has considerable effects on soil and water losses. In this experiment, it is intedned to observe the differences of soil and water losses in different directions of furrows of sloped fields so that the results thus obtained could be informed to farmers who should be careful in determining furrow direction for soil erosion control. Some the major experimental results are summarized as follows: The direction of furrows did not affect so much on the runoffs in a gentle slope, as the runoff is 509 ton/10a in the contouring plot, $51^{\circ}$/ton/10a in the 45-degree plot, and 560 ton/10a in the up-and-down hill plot. The contouring plot among the three plots had best effect on soil conservation, as the soil losses are 5.8 ton/10a in the contouring plot, 9.3 ton/10a in the 45 degree plot, and 10.2 ton/10a in the up-and-down hill plot.

  • PDF

Optimal lay-up of hybrid composite beams, plates and shells using cellular genetic algorithm

  • Rajasekaran, S.;Nalinaa, K.;Greeshma, S.;Poornima, N.S.;Kumar, V. Vinoop
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.557-580
    • /
    • 2003
  • Laminated composite structures find wide range of applications in many branches of technology. They are much suited for weight sensitive structures (like aircraft) where thinner and lighter members made of advanced fiber reinforced composite materials are used. The orientations of fiber direction in layers and number of layers and the thickness of the layers as well as material of composites play a major role in determining the strength and stiffness. Thus the basic design problem is to determine the optimum stacking sequence in terms of laminate thickness, material and fiber orientation. In this paper, a new optimization technique called Cellular Automata (CA) has been combined with Genetic Algorithm (GA) to develop a different search and optimization algorithm, known as Cellular Genetic Algorithm (CGA), which considers the laminate thickness, angle of fiber orientation and the fiber material as discrete variables. This CGA has been successfully applied to obtain the optimal fiber orientation, thickness and material lay-up for multi-layered composite hybrid beams plates and shells subjected to static buckling and dynamic constraints.

Thermal Deformation and Residual Stress Analysis of Lightweight Piezo-composite Curved Actuator (복합재료와 압전재료로 구성된 곡면형 작동기의 열변형 및 잔류응력 해석)

  • 정재한;박기훈;박훈철;윤광준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.126-129
    • /
    • 2001
  • LIPCA (LIghtweight Piezo-composite Curved Actuator) is an actuator device which is lighter than other conventional piezoelectric ceramic type actuator. LIPCA is composed of a piezoelectric ceramic layer and fiber reinforced light composite layers, typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. LIPCA has curved shape like a typical THUNDER (thin-layer composite unimorph feroelectric driver and sensor), but it is lighter an than THUNDER. Since the curved shape of LIPCA is from the thermal deformation during the manufacturing process of unsymmetrically laminated lay-up structure, an analysis for the thermal deformation and residual stresses induced during the manufacturing process is very important for an optimal design to increase the performance of LIPCA. To investigate the thermal deformation behavior and the induced residual stresses of LIPCA at room temperature, the curvatures of LIPCA were measured and compared with those predicted from the analysis using the classical lamination theory. A methodology is being studied to find an optimal stacking sequence and geometry of LIPCA to have larger specific actuating displacement and higher force. The residual stresses induced during the cooling process of the piezo-composite actuators have been calculated. A lay-up geometry for the PZT ceramic layer to have compression stress in the geometrical principal direction has been designed.

  • PDF

Developing Integrated Compressor Cooler System of 3D Printing Nozzle (3D 프린팅 노즐의 일체형 압출기 쿨링 시스템 개발)

  • Son, Ji-Hwan;Park, Hyun-Woo;Ha, Dong-Woo;Lee, Chang-U;Kim, Jin-Su;Kang, Seong-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • In a large 3D printer when the cooler, which cools the filament, acts in one direction, the area directly exposed to the cooling is cooled to the proper temperature. However, the cooling effect on the opposite area is relatively less. It was found in experiments that filaments with a thickness of over 2 mm exhibit the cooling problem in one directional cooling. Consequently, cooling was performed to prevent the flow-down and to produce firm support leading to an improvement in product quality in extrusion. Further, the lay-up of a 3D printer with five guides combined with a duct was achieved. Analysis showed that the improvement in the cooling effect enables stable extrusion and lay-up and thus, reduces fabrication time.