• 제목/요약/키워드: Launching simulation

검색결과 58건 처리시간 0.024초

Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter

  • Lim, Hyung-Chul;Neumann, Gregory A.;Choi, Myeong-Hwan;Yu, Sung-Yeol;Bang, Seong-Cheol;Ka, Neung-Hyun;Park, Jong-Uk;Choi, Man-Soo;Park, Eunseo
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권3호
    • /
    • pp.211-219
    • /
    • 2016
  • Korea's lunar exploration project includes the launching of an orbiter, a lander (including a rover), and an experimental orbiter (referred to as a lunar pathfinder). Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.

소형인공위성용 리튬이온 배터리시스템의 신뢰성 확보을 위한 우주인증시험 (Space Qualification of Small Satellite Li-ion Battery System for the Secured Reliability)

  • 박경화;이강현
    • 한국항공우주학회지
    • /
    • 제42권4호
    • /
    • pp.351-359
    • /
    • 2014
  • 본 논문에서는 저궤도 소형인공위성에서 위성의 각 부에 전원을 공급하기 위한 리튬이온 배터리 시스템의 신뢰성 확보를 위해 수행한 우주인증시험들의 결과를 나타내었다. 리튬이온 배터리 시스템의 신뢰성을 검증하기 위하여 구조해적, 성능시험, 우주 및 발사환경에서의 환경시험 등을 수행하였다. 모든 해석 및 시험 결과가 요구조건에 만족함을 보임으로써 리튬이온 배터리를 적용한 소형인공위성의 신뢰성을 검증하고 제고할 수 있었다.

불확실한 제품 수명주기를 고려한 최적가격결정 모형에 관한 연구 (Optimal Pricing Policy under Uncertain Product Lifetimes)

  • 이훈영;주기인
    • 한국경영과학회지
    • /
    • 제25권2호
    • /
    • pp.23-31
    • /
    • 2000
  • Many studies in marketing and economics have attempted to model price and sales path under the dynamic diffusion process. Most of these models have been based on a fixed product lifetime. The current business climate requiring intensive development of new products however affects the diffusion of new products and their lifetime. Many products have not enjoyed the expected life cycle at the launching stage due to intense technical development competitive reactions, and financial problems. Most diffusion models however have not taken account of the lifetime uncertainty of new product. If the products do not last over the planning horizon set by those models. the optimal price derived from them could be futile. Therefore we had better take such lifetime uncertainty into consideration when developing diffusion models, In this paper we study the impact of uncertain product lifetime on its optimal pricing path in non-competitive market. We develop an optimal pricing model under uncertain product lifetimes and conduct a simulation study to investigate their effects on the optimal pricing and corresponding sales paths. The simulation study provides some interesting findings on optimal pricing policy under uncertain product lifetime. This study could be a stepping stone for the further extended study of optimal pricing strategy with uncertain product lifetime.

  • PDF

북한 SLBM 탐지를 위한 레이다 수신전력 간편 추정 방법 (Convenient Radar Received Power Prediction Method for North Korea SLBM Detection)

  • 서형필;박형훈;이경행
    • 한국시뮬레이션학회논문지
    • /
    • 제26권2호
    • /
    • pp.51-58
    • /
    • 2017
  • 본 연구에서는 시뮬레이션을 거친 북한의 잠수함 발사 탄도미사일의 비행궤적에 대하여 레이더 수신전력에 대한 간편 추정방법에 대해 제시하였다. 최근 북한은 잠수함 발사 탄도미사일의 비행시험에 성공하였으며, 이는 국제적인 안보에 상당한 위협이 되고 있다. 따라서 이러한 위협에 능동적으로 대응하기 위해서는 잠수함 발사 탄도미사일의 위협에 대해 레이더를 이용한 탐지특성에 대한 과학적이고 논리적인 분석이 이루어져야 한다. 이러한 관점에서 본 연구에서는 북한의 잠수함 발사탄도미사일의 비행궤적에 따른 레이더의 탐지특성을 분석하기 위해 레이더 반사 면적(RCS)과 전파특성에 대한 모델링 및 시뮬레이션을 실시하였다.

피치운동을 이용한 정밀 다위치 정렬기법 개발 (Development of the Precise Multi-Position Alignment Method using a Pitch Motion)

  • 이정신
    • 한국군사과학기술학회지
    • /
    • 제13권4호
    • /
    • pp.708-715
    • /
    • 2010
  • In Strapdown Inertial Navigation System, alignment accuracy is the most important factor to determine the performance of navigation. However by an existing self-alignment method, it takes a long time to acquire the alignment accuracy that we want. So, to attain the desired alignment accuracy in as little as $\bigcirc$ minutes, we have developed the precise multi-position alignment method. In this paper, it is proposed a inertial measurement matching transfer alignment method among alignment methods to minimize the alignment error in a short time. It is based on a mixed velocity-DCM matching method be suitable to the operating environment of vertical launching system. The compensation methods to reduce misalign error, especially azimuth angle error incurred by measurement time-delay error and body flexure error are analyzed and evaluated with simulation. This simulation results are finally confirmed by experimentations using FMS(Flight Motion Simulator) in Lab and the integration test to follow the fire control mission.

Tracking Error Performance of Tracking Filters Based on IMM for Threatening Target to Navel Vessel

  • Fang, Tae-Hyun;Choi, Jae-Weon
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권4호
    • /
    • pp.456-462
    • /
    • 2007
  • Tracking error performance is investigated for the typical maneuvering pattern of the anti-ship missile for tracking filters based on IMM filter in both clear and cluttered environments. Threatening targets to a navel vessel can be categorized into having three kinds of maneuvering patterns such as Waver, Pop-Up, and High-Diver maneuvers, which are classified according to launching platform or acceleration input to be applied. In this paper, the tracking errors for three kinds of maneuvering targets are represented and are investigated through simulation results. Studying estimation errors for each maneuvering target allows us to have insight into the most threatening maneuvering pattern and to construct the test maneuvering scenario for radar system validation.

Ballistic Range를 이용한 Projectile 공기역학의 수치모사 (A Numerical Simulation of Projectile Aerodynamics Using a Ballistic Range)

  • 정성재;;김희동;이정민
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.386-393
    • /
    • 2005
  • The objective of the present study is to develop a new type of the Ballistic range, called 'two-stage light gas gun'. A computational work has been performed to investigate the aerodynamics of a projectile which is launched from the two-stage light gas gun. A moving coordinate method for a multi-domain technique is employed to simulate unsteady projectile flows with a moving boundary. The effect of a virtual mass is added to the axisymmetric unsteady Euler equation systems. The computed results reasonably capture the major flow characteristics which are generated in launching the projectile supersonically, such as the interaction between the shock wave and the blast wave, the interaction between the vortical flow and the barrel shock, and the steady under-expanded jet. The present computational results properly predict the velocity, acceleration, and drag histories of the projectile.

  • PDF

Effect of Fiber Dispersion and Self-phase Modulation in Multi-channel Subcarrier Multiplexed Optical Signal Transmission

  • Kim, Kyoung-Soo;Jeong, Ji-Chai;Lee, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.351-356
    • /
    • 2010
  • We investigated the combined effect of fiber chromatic dispersion and self-phase modulation (SPM) in multi-channel subcarrier multiplexed (SCM) optical transmission systems. We theoretically analyzed the transmission characteristics of the SCM signals with the effect of SPM and chromatic dispersion in a single-mode optical fiber by numerical simulations based on the nonlinear Schrodinger equation. The numerical simulation results revealed that the effect of fiber dispersion and SPM could occur independently between subcarrier channels in two-channel SCM systems for small optical modulation index (OMI) and large channel spacing. However, for large OMI, small channel spacing, and large fiber launching power, we found a performance degradation of the two-channel system compared to that of a single-channel system. These parameters are therefore important for the optimization of multi-channel SCM systems applicable to radio over fiber networks.

고속카메라 데이터 분석을 통한 발사체 지지대 분산 궤적의 근사적 예측 방법 (A Prediction Method for Sabot-Trajectory of Projectile by using High Speed Camera Data Analysis)

  • 박윤호;우호길
    • 한국군사과학기술학회지
    • /
    • 제21권1호
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper, we have proposed a prediction method for sabot-trajectory of projectile using high speed camera data analysis. Through analyzing trajectory of sabot with high speed camera data, we can extract its real velocity and acceleration including effects of friction force, pressure of flume, etc. Using these data, we suggest a prediction method for sabot-trajectory of projectile having variable acceleration, especially for minimum and maximum acceleration, by using interpolation method for velocity and acceleration data of sabot. Also we perform the projectile launching tests to achieve the trajectory of sabot in case of minimum and maximum thrust. Simulation results show that they are similar to real tests data, for example velocity, acceleration and the trajectory of sabot.

A Novel-Type Velocity-controllable Electromagnetic Coil Launcher based on Voltage Control

  • Huang, Wenkai;Huan, Shi;Xiao, Ying
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2067-2073
    • /
    • 2018
  • This paper will present the design of a novel-type velocity-controllable electromagnetic coil launcher (EMCL). By studying the influence of initial capacitor voltage on the velocity of an EMCL, the launcher voltage can be set to precisely adjust the velocity of projectile launching. The simulation of voltage and velocity in relation to time is obtained by Maxwell software. The experimental data show that for the launch accuracy to be achievable, the actual precision is 2%. Because of the excellent performance of Velocity-controllable EMCL, it can replace the air gun and applied to split Hopkinson pressure bar (SHPB).