• Title/Summary/Keyword: Launching environment test

Search Result 22, Processing Time 0.023 seconds

Performance evaluation on the separation device activated by shape memory alloy actuator (형상기억합금을 이용한 소형 위성용 분리장치의 성능평가)

  • Choi, Junwoo;Lee, Dongkyu;Hwang, Kukha;Lee, Minhyung;Kim, Byungkyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.635-640
    • /
    • 2015
  • In this paper, we report a non-explosive separation device for a small satellite which utilize a shape memory alloy actuator. Based on previous research, we try to increase the reliability of the proposed device by changing some components. It enables the proposed device to activate under high preload. Also, we confirm it generates low shock which is main advantage of non-explosive separation device. Finally, vibration test which mimics launching environment and thermal vacuum test which mimics space environment are carried out respectively. After each environment test, we confirm the proposed device is successfully activated. Conclusively, we develop a non-explosive separation device which can activate with low shock under high preload after shock and environment tests(vibration and thermal vacuum tests).

Launch Environment Requirements for Earth Observation Satellite (지구관측위성의 발사환경시험 요구조건)

  • Kim, Kyung-Won;Kim, Sung-Hoon;Kim, Jin-Hee;Rhee, Ju-Hun;Hwang, Do-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.747-750
    • /
    • 2004
  • After launching, spacecraft is exposed to extreme environments. So spacecraft should be tested after design/manufacture to verify whether components can be operated functionally. Acceleration transferred from launch vehicle to spacecraft produces quasi-static load, sine vibration and random vibration. Random vibration is also induced by acoustic vibrations transferred by surface of spacecraft. And shock vibration is produced when spacecraft is separated from launch vehicle. To verify operation of spacecraft under these launch environments, separation shock test, sine vibration test, acoustic vibration test and random vibration test should be performed. This paper describes these launch environment test requirements.

  • PDF

Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments (발사환경에 대한 위성 전장품의 구조진동 해석)

  • 정일호;박태원;한상원;서종휘;김성훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.120-128
    • /
    • 2004
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, the electronic equipment of a satellite consists of an aluminum case containing PCB. Each PCB has resistors and IC. Noise and vibration of the wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation, random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when the frequency of random vibration meets with natural frequency of PCB, fatigue fracture may occur in the part of solder joint. The launching environment, thus, needs to be carefully considered when designing the electronic equipment of a satellite. In general, the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM or vibration test. In this study, the natural frequency and dynamic deflection of PCB are measured by FEM, and the safety of the electronic components of PCB is evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs ranging from the electronic equipments of a satellite to home electronics.

RAM(Rolling Airframe missile) Canister Localization on development of technical process and Quality Assurance procedure establishment (RAM(Rolling Airframe Missile) 발사관 국산화에 대한 공정 기술 개발 및 품질 인증 절차 확립)

  • Lee, Sang-Woo;Jo, Jung-Pyo;Lee, Sang-Jae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.541-547
    • /
    • 2010
  • This document presents the research and result about localization of the fiber-based launching canister of rolling missile which has helical rails. This document is about the technical process development which is included with the manufacturing of helical rails and application of the flame spaying which is different with other the fiber-based launching canister in korea. and And this document is about quality Assurance procedure through the qualification test and structural evaluation in conditions that the canister has to have in real shipboard environment.

  • PDF

Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments (발사환경에 대한 인공위성 전장품의 구조진동 해석)

  • 박태원;정일호;한상원;김성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.768-771
    • /
    • 2003
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, electronic equipment (KOMPSAT 2, RDU : Remote Drive Unit) of a satellite consists of aluminum case containing PCB (Printed circuit boards). Each PCB has resistors and IC (Integrated circuits). Noise and vibration of wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation. random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when tile frequency of random vibration meets with natural frequency of PCB. fatigue fracture nay occur in the part of solder joint. The launching environment, thus. needs to be carefully considered when designing the electronic equipment of a satellite. In general. the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM(Finite Element Method) or vibration test. In this study. the natural frequency and dynamic deflection of PCB are measured by FEM, aud the safety of the electronic components of PCB is being evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs from the electronic equipments of a satellite to home electronics.

  • PDF

Antenna Test Range for Telecommunication Satellite (통신위성용 안테나 테스트 레인지)

  • Lim, Seong-Bin;Kim, Tae-Youn;Choi, Seok-Won;Sim, Eun-Sup
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.52-59
    • /
    • 2007
  • Telecommunication satellite consists of a bus system and an RF payload system with high efficiency and high gain reflector antennas. Antenna measurement and also RF system performance (antenna under test, payload and satellite level) have to be evaluated enough before launching in the far-field range or equivalent test range. Basically far-field range is required in a range from two hundred meters to several kilo meters, and it is highly constrained to the externa1 environment, like the RF and the whether environment So the compact antenna test range is developed and used efficiently without external environments as in-door facility. This paper describes the configuration of the compact antenna test range, the range error, and the physical concept of the plane wave illumination Also, it provides a overall design of the anechoic chamber and range parameter values to accommodate the precision measurements in antenna test range.

  • PDF

Development of Electrohydraulic Actuation System for High Altitude Launch Vehicle (고고도 발사체용 전기유압식 구동장치시스템 개발)

  • Min, Byeong-Ju;Choe, Hyeong-Don;Gang, Lee-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.82-89
    • /
    • 2006
  • This paper describes the development results of electrohydraulic actuation system which performs the attitude and trajectory control of pitch and yaw motion using thrust vector control for high altitude launching vehicle operated in high vacuum environment (altitude higher than 300 km). As compared with electrohydraulic actuation system for low altitude launch vehicle which operated under altitude of stratosphere, the intensified development requirements, newly adopted design and manufacturing technologies, newly developed test equipments and test results are summarized in this paper. The development test and evaluation of actuation system were successfully accomplished. The developed actuation system will be installed on KSLV-I after finishing verification of interface and integration compatibility with related other systems.

RESEARCH FOR ROBUSTNESS OF THE MIRIS OPTICAL COMPONENTS IN THE SHOCK ENVIRONMENT TEST (MIRIS 충격시험에서의 광학계 안정성 확보를 위한 연구)

  • Moon, B.K.;Kanai, Yoshikazu;Park, S.J.;Park, K.J.;Lee, D.H.;Jeong, W.S.;Park, Y.S.;Pyo, J.H.;Nam, U.W.;Lee, D.H.;Ree, S.W.;Matsumoto, Toshio;Han, W.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.3
    • /
    • pp.39-47
    • /
    • 2012
  • MIRIS, Multi-purpose Infra-Red Imaging System, is the main payload of STSAT-3 (Korea Science & Technology Satellite 3), which will be launched in the end of 2012 (the exact date to be determined) by a Russian Dnepr rocket. MIRIS consists of two camera systems, SOC (Space Observation Camera) and EOC (Earth Observation Camera). During a shock test for the flight model stability in the launching environment, some lenses of SOC EQM (Engineering Qualification Model) were broken. In order to resolve the lens failure, analyses for cause were performed with visual inspections for lenses and opto-mechanical parts. After modifications of SOC opto-mechanical parts, the shock test was performed again and passed. In this paper, we introduce the solution for lens safety and report the test results.

Design and Implementation of test system for safety separation and performance verification of aircraft weapons/equipment (항공기 무장/장착물의 안전 분리 및 성능 검증을 위한 점검 시스템 설계 및 구현)

  • Kim, Hyo-joung;Kim, Yang-won;Kwon, Byung-Gi
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.47-53
    • /
    • 2022
  • With the recent development of defense technology, various aircraft armaments/equipments are being developed. Among them, cruise guided weapons(missile) for launching aircraft can be installed on aircraft aftersecuring reliability and safety through varioustests. In order to avoid collision with aircraft, missile separated from aircraft must release restraint of wing at the specified time, control wing in the specified direction. In order to confirm this, a test system that can control MIL-STD-1760 according to safety separation procedure and verify release performance is required. test system needs a function to check circuit for release of restraints and a function to check driving performance by controlling MIL-STD-1760. In addition, test system should be simulate environment separated from aircraft. This paper presented a testsystemthat can verify circuit and driving performance mounted on missile according to the safety separation procedure, and it was confirmed that it was normally separated from aircraft through flight tests.

The compatible non-explosive separation device for various pre-loads using the Ni-Cr wire and Kevlar rope (다양한 사전하중에 적용할 수 있는 Ni-Cr wire와 Kevlar rope를 이용한 위성 분리장치)

  • Hwang, Hyun-Su;Kim, Byung-Kyu;Jang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.150-155
    • /
    • 2013
  • We present a kevlar rope based Non-Explosive Actuator(NEA) device which has simple structure and is activated by burning Ni-Cr wire. Through performance test, we find it can be operated under various pre-load by simply changing turn number of Ni-Cr wire. It shows release time of 680ms and shock level of 110G under pre-load of 6.0kN. Launching environment and space environment tests are planned to verify performance of the NEA based on European Satellite Agency test manual. Conclusively, we expect the proposed NEA can be applicable to release solar panel and fairing separation.