• Title/Summary/Keyword: Launch vehicle

Search Result 792, Processing Time 0.026 seconds

Design of Electromechanical Actuator Capable of Simultaneous Control of Aerodynamic and Thrust Vector (공력과 추력방향 동시 제어가 가능한 전기식 구동장치 설계)

  • Lee, Ha Jun;Yoon, Kiwon;Song, In Seong;Park, Chang Kyoo;Lee, Young Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Electromechanical Actuator(EMA) for flight vehicles generally serves to control the fin deflection angle or the thrust vector angle. This paper deals with design and development of EMA for both aerodynamic control and thrust vector control. In this paper, a novel compact EMA is proposed that can simultaneously control both the tail fin and the jet vane with one actuator and detach the jet vane after vertical launch and rapid turn of the flight vehicle so as to increase efficiency during flying to target. To do this, we designed the EMA using a push-push link mechanism and derived a mathematical model. The mathematical model is validated by comparing simulation result and experimental data. The performance and reliability of the proposed EMA have been verified through performance test, environmental test and ground test. The proposed EMA is expected to be useful as an EMA for flight vehicles because of its simple and compact structure, as well as its performance and reliability.

Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator (직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델)

  • Oh, Sang Gwan;Lee, Hee Joong;Park, Hyun Jong;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.738-746
    • /
    • 2019
  • Instead of hydraulic actuation systems, an electromechanical actuation system is more efficient in terms of weight, cost, and test evaluation in the thrust vector control of the 7-ton gimbal engine used in the Korea Space Launch Vehicle-II(KSLV-II) $3^{rd}$ stage. The electromechanical actuator is a kind of servo actuator with position feedback and uses a BLDC motor that can operate at high vacuum. In the case of the gimballed rocket engine, a synthetic resonance phenomenon may occur due to a combination of a vibration mode of the actuator itself, a bending mode of the launcher structure, and an inertial load of the gimbals engine. When the synthetic resonance occurs, the control of the rocket attitude becomes unstable. Therefore, the requirements for the stiffness have been applied in consideration of the gimbal engine characteristics, the support structure, and the actuating system. For the 7-ton gimbal engine of the KSLV-II $3^{rd}$ stage, the stiffness requirement of the actuation system is $3.94{\times}10^7N/m$, and the direct drive type electromechanical actuator is designed to satisfy this requirement. In this paper, an equivalent stiffness analysis model of a direct drive electromechanical actuator designed based on the stiffness requirements is proposed and verified by experimental results.

The study on structural vulnerability analysis of small fixed wing UAV with hard landing (동체 착륙 방식의 소형 고정익 무인항공기 구조 취약점 분석)

  • Jeong, Seong-rok;Kang, Ju-hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.20-25
    • /
    • 2019
  • In this paper, the structural weakness analysis and quality improvement of small fixed wing UAV of the hard landing type were studied. Unlike conventional aircraft, small UAV does not use runways because of its small size. Instead, small UAV use hand launch takeoff and hard landings. This type has many operational advantages because it can take off and land in a narrow space. But, the hard landing has a strong impact on the structure of the UAV and can cause serious damage. In order to analyze the exact cause of this phenomenon, the structural analysis was carried out using the 3D structural analysis program (ABAQUS) to identify the location of the fracture. And to improve the accuracy of the structural analysis, properties of the material were obtained through specimen test. As a result of the analysis, structural weaknesses were identified and improved. Thus, the validity of the study was verified by demonstrating the quality of enhanced structure through a real impact test at a higher level of 1.5 times the maximum impact during operation.

Pogo Suppressor Design of a Space Launch Vehicle using Multiple-Objective Optimization Approach (다목적함수 최적화 기법을 이용한 우주발사체의 포고억제기 설계)

  • Yoon, NamKyung;Yoo, JeongUk;Park, KookJin;Shin, SangJoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • POGO is a dynamic axial instability phenomenon that occurs in liquid-propelled rockets. As the natural frequencies of the fuselage and those of the propellant supply system become closer, the entire system will become unstable. To predict POGO, the propellant (oxidant and fuel) tank in the first stage is modeled as a shell element, and the remaining components, the engine and the upper part, are modeled as mass-spring, and structural analysis is performed. The transmission line model is used to predict the pressure and flow perturbation of the propellant supply system. In this paper, the closed-loop transfer function is constructed by integrating the fuselage structure and fluid modeling as described above. The pogo suppressor consists of a branch pipe and an accumulator that absorbs pressure fluctuations in a passive manner and is located in the middle of the propellant supply system. The design parameters for its design optimization to suppress the decay phenomenon are set as the diameter, length of the branch pipe, and accumulator. Multiple-objective function optimization is performed by setting the energy minimization of the closed loop transfer function in terms of to the mass of the pogo suppressor and that of the propellant as the objective function.

Analysis of Orbital Deployment for Micro-Satellite Constellation (초소형 위성군 궤도배치 전략 분석)

  • Song, Youngbum;Shin, Jinyoung;Park, Sang-Young;Jeon, Soobin;Song, Sung-Chan
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.63-72
    • /
    • 2022
  • As interest in microsatellites increases, research has been actively conducted recently on the performance and use, as well as the orbital design and deployment techniques, for the microsatellite constellations. The purpose of this study was to investigate orbital deployment techniques using thrust and differential atmospheric drag control (DADC) for the Walker-delta constellation. When using thrust, the time and thrust required for orbital deployment vary, depending on the separation speed and direction of the satellite with respect to the launch vehicle. A control strategy to complete the orbital deployment with limited performance of the propulsion system is suggested and it was analyzed. As a result, the relationship between the deployment period and the total thrust consumption was derived. It takes a relatively longer deployment time using differential air drag rather than consuming thrusts. It was verified that the satellites can be deployed only with differential air drag at a general orbit of a microsatellite constellation. The conclusion of this study suggests that the deployment strategy in this paper can be used for the microsatellite constellation.

Europe's Space Exploration and Korea's Space Exploration Strategy from the Perspective of Science and Technology Diplomacy (과학기술외교 관점에서 바라본 유럽의 우주탐사와 우리나라 우주탐사전략)

  • Nammi Choe
    • Journal of Space Technology and Applications
    • /
    • v.2 no.3
    • /
    • pp.195-205
    • /
    • 2022
  • Space exploration is an area where international cooperation takes place more actively than any other space activities such as Earth observation, communication and navigation. This is because a country cannot afford a huge budget to have full infrastructure for deep space exploration, such as a heavy launch vehicle, communication and energy infrastructure, and human habitats, and has learned that it is not sustainable. Korea expressed its willingness to join humanity's epic exploration journey by signing the Artemis Accords in 2021 and launching Danuri lunar orbiter in 2022. The beginning of space exploration means that Korea's space activities have expanded beyond the stage of focusing only on technology development to set norms necessary to accompany other countries and cooperate diplomatically to solve exposed problems. This paper analyzed European space policy and space exploration, which are most actively participating in the Artemis Program and exerting diplomatic power in the space field, from the perspective of science and technology diplomacy. The suggestions for Korea's space exploration strategy from the perspective of science and technology diplomacy were drawn by examining the international cooperation strategies in Europe's space activities ranging from space policy, space strategy, and space exploration program to project units.

Conceptual Design of a LOX/Methane Rocket Engine for a Small Launcher Upper Stage (소형발사체 상단용 액체메탄 로켓엔진의 개념설계)

  • Kim, Cheulwoong;Lim, Byoungjik;Lee, Junseong;Seo, Daeban;Lim, Seokhee;Lee, Keum-Oh;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.54-63
    • /
    • 2022
  • A 3-tonf class liquid rocket engine that powers the upper stage of a small launcher and lifts 500 kg payload to 500 km SSO is designed. The small launcher is to utilize the flight-proven technology of the 75-tonf class engine for the first stage. A combination of liquid oxygen and liquid methane has been selected as their cryogenic states can provide an extra boost in specific impulse as well as enable a weight saving via the common dome arrangement. An expander cycle is chosen among others as the low-pressure operation makes it robust and reliable while a specific impulse of over 360 seconds is achievable with the nozzle extension ratio of 120. Key components such as combustion chamber and turbopump are designed for additive manufacturing to a target cost. The engine system provides an evaporated methane for the autogenous pressurization system and the reaction control of the stage. This upper stage propulsion system can be extended to various missions including deep space exploration.

Orbital Transfer Process and Analysis of Small Satellite for Capturing Korean Satellite as Active Debris Removal (ADR) Mission (우리별 위성 포획 임무 수행을 위한 소형위성의 궤도 천이 방법 및 분석)

  • Junchan Lee;Kyungin Kang
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.101-117
    • /
    • 2023
  • Active debris removal, a technology that approaches and removes space debris in orbit, and the on-orbit service, a technology for extending the mission life of satellites by fuel charging or by exchanging the battery, are gaining interest with the growth of the space community. SaTReC plans to develop a satellite capable of capturing and removing Korean satellites orbiting in space after the end of their missions. In contrast to the previously launched satellites by Korea, which were mainly intended to observe Earth and the space environment, rendezvous/docking technologies, as required in the future during, for instance, space exploration missions, will be implemented and demonstrated. In this paper, an orbital transition method for next-generation small satellites that will capture and remove space debris will be introduced. It is assumed that a small satellite with a mass of approximately 200 kg will be injected into the mission orbit through Korea Space Launch Vehicle-II in 2027. Because the satellite must access the target using a minimum amount of fuel, an approaching technology using Earth's J2 perturbation force has been developed. This method is expected to enable space debris removal missions for relatively lightweight satellites and to serve as the basis for carrying out a new type of space exploration in what is termed the 'Newspace' era.

Legal Study for the KSLV launching - Products & Third Party Liability - (KSLV발사에 따른 제작 및 제3자피해 책임에 대한 우주법적 소고)

  • Shin, Sung-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.21 no.1
    • /
    • pp.169-189
    • /
    • 2006
  • In 2007, KSLV(Korea Small Launching Vehicle) that we made at Goheung National Space Center is going to launch and promotes of our space exploration systematically and 'Space Exploration Promotion Act' was enter into force. 'Space Exploration Promotion Act' article 3, section 1, as is prescribing "Korean government keeps the space treaties contracted with other countries and international organizations and pursues after peaceful uses of outer space." The representative international treaties are Outer Space Treaty (1967) and Liability Convention (1972) etc. In Liability convention article 2, "A launching State shall be absolutely liable to pay compensation for damage caused by its space object on the surface of the earth or to aircraft in flight. The important content of the art. 2 is the responsible entity is the 'State' not the 'Company'. According by Korean Space Exploration Act art. 14, person who launches space objects according to art. 8 and art. 11 must bear the liability for damages owing to space accidents of the space objects. Could Korean government apply the Products Liability Act which is enter into force from July 1, 2002 to space launching person? And what is the contact type between Korea Aerospace Research Institute(KARl) and Russia manufacturer. Is that a Co-Development contract or Licence Product contract? And there is no exemption clause to waive the Russia manufacturer's liability which we could find it from other similar contract condition. If there is no exemption clause to the Russia manufacturer, could we apply the Korean Products Liability Act to Russia one? The most important legal point is whether we could apply the Korean Products Liability Act to the main component company. According by the art. 17 of the contract between KARl and the company, KARl already apply the Products Liability Act to the main component company. For reference, we need to examine the Appalachian Insurance co. v. McDonnell Douglas case, this case is that long distance electricity communication satellite of Western Union Telegraph company possessions fails on track entry. In Western Union's insurance company supplied to Western Union with insurance of $ 105 millions, which has the satellite regard as entirely damage. Five insurance companies -Appalachian insurance company, Commonwealth insurance company, Industrial Indemnity, Mutual Marine Office, Northbrook Excess & Surplus insurance company- went to court against McDonnell Douglases, Morton Thiokol and Hitco company to inquire for fault and strict liability of product. By the Appalachian Insurance co. v. McDonnell Douglas case, KARl should waiver the main component's product liability burden. And we could study the possibility of the adapt 'Government Contractor Defense' theory to the main component company.

  • PDF

The Liability for Damage and Dispute Settlement Mechanism under the Space Law (우주법상 손해배상책임과 분쟁해결제도)

  • Lee, Kang-Bin
    • Journal of Arbitration Studies
    • /
    • v.20 no.2
    • /
    • pp.173-198
    • /
    • 2010
  • The purpose of this paper is to research on the liability for the space damage and the settlement of the dispute with reference to the space activity under the international space treaty and national space law of Korea. The United Nations has adopted five treaties relating to the space activity as follows: The Outer Space Treaty of 1967, the Rescue and Return Agreement of 1968, the Liability Convention of 1972, the Registration Convention of 1974, and the Moon Treaty of 1979. All five treaties have come into force. Korea has ratified above four treaties except the Moon Treaty. Korea has enacted three national legislations relating to space development as follows: Aerospace Industry Development Promotion Act of 1987, Outer Space Development Promotion Act of 2005, Outer Space Damage Compensation Act of 2008. The Outer Space Treaty of 1967 regulates the international responsibility for national activities in outer space, the national tort liability for damage by space launching object, the national measures for dispute prevention and international consultation in the exploration and use of outer space, the joint resolution of practical questions by international inter-governmental organizations in the exploration and use of outer space. The Liability Convention of 1972 regulates the absolute liability by a launching state, the faulty liability by a launching state, the joint and several liability by a launching state, the person claiming for compensation, the claim method for compensation, the claim period of compensation, the claim for compensation and local remedy, the compensation amount for damage by a launching state, the establishment of the Claims Commission. The Outer Space Damage Compensation Act of 2008 in Korea regulates the definition of space damage, the relation of the Outer Space Damage Compensation Act and the international treaty, the non-faulty liability for damage by a launching person, the concentration of liability and recourse by a launching person, the exclusion of application of the Product Liability Act, the limit amount of the liability for damage by a launching person, the cover of the liability insurance by a launching person, the measures and assistance by the government in case of occurring the space damage, the exercise period of the claim right of compensation for damage. The Liability Convention of 1972 should be improved as follows: the problem in respect of the claimer of compensation for damage, the problem in respect of the efficiency of decision by the Claims Commission. The Outer Space Damage Compensation Act of 2008 in Korea should be improved as follows: the inclusion of indirect damage into the definition of space damage, the change of currency unit of the limit amount of liability for damage, the establishment of joint and several liability and recourse right for damage by space joint launching person, the establishment of the Space Damage Compensation Review Commission. The 1998 Final Draft Convention on the Settlement of Disputes Related to Space Activities of 1998 by ILA regulates the binding procedure and non-binding settlement procedure for the disputes in respect of space activity. The non-binding procedure regulates the negotiation or the peaceful means and compromise for dispute settlement. The binding procedure regulates the choice of a means among the following means: International Space Law Court if it will be established, International Court of Justice, and Arbitration Court. The above final Draft Convention by ILA will be a model for the innovative development in respect of the peaceful settlement of disputes with reference to space activity and will be useful for establishing the frame of practicable dispute settlement. Korea has built the space center at Oinarodo, Goheung Province in June 2009. Korea has launched the first small launch vehicle KSLV-1 at the Naro Space Center in August 2009 and June 2010. In Korea, it will be the possibility to be occurred the problems relating to the international responsibility and dispute settlement, and the liability for space damage in the course of space activity. Accordingly the Korean government and launching organization should make the legal and systematic policy to cope with such problems.

  • PDF