• Title/Summary/Keyword: Launch vehicle

Search Result 788, Processing Time 0.027 seconds

STSAT-2 PFM Environmental Test Result (과학기술위성 2호 준비행모델 환경시험 결과)

  • Lee, Seung-Hun;Park, Jong-Oh;Sim, Eun-Sup;Rhee, Seung-Woo;Seo, Jung-Ki;Jang, Tae-Sung;Lee, Sang-Hyun;Kim, Sung-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.55-63
    • /
    • 2007
  • STSAT-2 (Science & Technology SATellite-2) is a Korea micro-satellite which will be launched at NARO Space center in Koheung, Korea. Launch vehicle for STSAT-2 is KSLV-1 (Korea Space Launch Vehicle-1) which is the first development in Korea space launch vehicle program. Starting development in 2002 EM(Engineering Model), PFM(Proto-Flight Model), and FM(Flight Model) were developed completely. Electrical functional test, space environmental test, and launch vehicle environmental test on system level are performed for testing those development models. In this paper we report the results of STSAT-2 PFM space environmental test and launch vehicle environmental test which is successfully completed.

  • PDF

The Launch Vehicle Autopilot Structure Design and Analysis with Roll Compensation Algorithm (롤 보상알고리듬을 적용한 발사체 자세제어기 구조 설계 및 분석)

  • Park, Yong-Kyu;Oh, Choong-Seok;Sun, Byung-Chan;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.98-106
    • /
    • 2011
  • This paper is summarized for designing launch vehicle autopilot structure with attitude angle command from guidance algorithm and for evaluating performance of autopilot using launch vehicle six-degree of freedom simulation program. The suggested autopilot has heritage from KSR-III/KSLV-I upper stage autopilot designing experience, and it has two design point. The one is, it must have same performance with KSR-III/KSLV-I upper stage autopilot, the other is, it must be simple autopilot structure and use low number of variable to apply on-board system. It is evaluated the performance using launch vehicle six-degree of freedom simulation program in case of roll maneuvering and no roll control flight condition.

Development of Launch Vehicle Connection Unit and High Pressure Flexible Hose for KSLV-II Ground Operation (우주센터 종합조립동 고압가스 운용을 위한 발사체 접속장치 및 고압유연배관 개발)

  • Nam, Jungwon;Chun, Young-Doo;Jang, Youngsoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1156-1159
    • /
    • 2017
  • The various ground support equipments are necessary for KSLV-II ground operation at the assembly building located in Naro Space Center. Among the various ground support equipments, the launch vehicle connection unit and high pressure flexible hose are important elements, because they are used for connection between the ground compressed gas supply system and the launch vehicle. In this paper, the development progress of the launch vehicle connection unit and high pressure flexible hose are introduced.

  • PDF

Study on Aerodynamic Characteristics of a Launch Vehicle with Mach Number, Angle of Attack and Nozzle Effect at Initial Stage (발사초기 단계에서 발사체의 마하수, 받음각 및 노즐 효과에 따른 공력특성 연구)

  • Jeong, Taegeon;Kim, Sungcho;Choi, Jongwook
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.34-42
    • /
    • 2019
  • Aerodynamic characteristics for a launch vehicle are numerically analyzed with various conditions. The local drag coefficients are high at the nose of the launch vehicle in subsonic region and on the main body in supersonic region because of the induced drag and the wave drag, respectively. The drag coefficients show the similar trend with the angle of attack except zero degree. However, the more the angle of attack increases, the more dependent on the Mach number the lift coefficient is. The body rotation for the flight stability destroys the vortex pair formed above the body opposite to the flight direction, so the flow fields are more or less complicated. The drag coefficient of the launch vehicle at sea level is about three times larger than that at altitude 7.2 km. And the thrust jet at the nozzle causes to reduce the drag coefficient compared with the jetless transonic flight.

Present State of CFD Softwares Application for Launch Vehicle Analysis (발사체 해석을 위한 CFD 소프트웨어 적용 현황)

  • Jeong, Hwanghui;Kim, Jae Yeol;Shin, Jae-Ryul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.71-80
    • /
    • 2020
  • Before we develop LVAFoam, a CFD software for launch vehicle analysis, we conducted a survey on other CFD softwares. We looked at in-house code and commercial CFD software of other countries that were used as a simulation of launch vehicle's combustor, turbopump and external flow. This research included in-house code solvers, developed by NASA, Mississippi State University, DLR, Bertin Technologies, CNES, CERFACS, and JAXA as well as commercial CFD software from FLUENT, CFX, Advance/FrontFlow/red, GASP, CRUNCH CFD, CFD-ACE+, FINETM/Turbo, STAR-CCM+. The simulation cases of launch vehicle analysis from each commercial softwares and introduction of the LVAFoam were presented.

LCS(Launch Control System) Prototype Performance Analysis (발사관제시스템 프로토타입 성능 분석)

  • Hong, Ii Hee;Kim, Yang Mo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.54-60
    • /
    • 2006
  • LCC(Launch Control Center) in NARO space center performs a data monitoring and control through the interface to the external system of launch vehicle. Launch control function needs high reliability and processing speed. Hence, LCS(Launch Control System) is made up a real time system. An important role of the LCS Prototype is discovering a risk element and minimizing it through developing a launch control system. This paper deals with a real time data processing among the simulator, gateway, data distribution server, command and control server which is involving LCS Prototype.

  • PDF

KSLV-I Assembly Complex System Design (KSLV-I 조립콤플렉스 시스템 설계)

  • Jin, Seung Bo;Park, Jung Ju
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.37-41
    • /
    • 2006
  • The KSLV-I satellite launch vehicle will be launched in a space center currently under construction. The Space Center which is an advance post base of space development of Korea is located on Oenaro island in Kohung, South Cholla Province. A Ground Complex of the Space Center consists of an AC(Assembly Complex), a LC(Launch Complex), and a MCC(Mission Control Center). Assembly and test facilities are located in the AC in which stage assembly, integrated assembly, check-up, certification test, and pre-launch test are made effectively. A launch pad, fuel supply facilities, a launch control center and associated supporting facilities are located in the LC, and the MCC has control over the space center. These ground complex facilities have diverse forms of an interface with mechanical device, electric device, and etc. These should also provide optimum condition and performance during launch operation processes of the launch vehicle. This paper introduces the result of R&D for the AC of the ground complex performed during system design period.

  • PDF

Range Safety Activities for the Launch of an Earth Observation Satellite

  • Im, Jeong-Heum
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.194.2-194.2
    • /
    • 2012
  • Korea Aerospace Research Institute has developed an earth observation satellite and it was launched into its orbit in 2012 by using a foreign commercial launch vehicle. The launch site authority has imposed safety requirements to the spacecraft developer to ensure the safety of the personnel and to protect launch vehicle, spacecraft and facilities from accidents associated with the satellite operation at the launch site. This paper describes the range safety activities implemented for the satellite and supporting equipments during the whole phase of their design, manufacturing/test and operation at the launch site. To ensure the integrated requirements for safety management and design, system safety program plan has been developed. And based upon the plan, spacecraft developer conducted hazard analysis to identify and establish safety requirements to reflect in designs, procedures, operations. The result of the hazard analysis has been complied into safety data packages and it was reviewed by launch site review board at the safety reviews and finally it was approved to launch.

  • PDF

Fusion Tracking Filter for Satellite Launch Vehicles (위성발사체 궤도추정을 위한 융합필터 연구)

  • Ryu, Seong Sook;Kim, Jeongrae;Song, Yong Kyu;Ko, Jeonghwan
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • The flight safety system for the satellite launch vehicles is required in order to minimize the risk due to launch vehicle failure. For prompt and reliable decision of flight termination, the flight safety system usually uses multiple sensors to estimate launch vehicle's flight trajectory. In that case, multiple types of observed tracking data makes it difficult to identify the flight termination condition. Therefore, a fusion tracking filter handling the multiple tracking data is necessary for the flight safety system. This research developed a simulation software for generating multiple types of launch vehicle tracking data, and then processed the data with fusion filters.

  • PDF

Acoustic test of the payload fairing of Korea satellite launch vehicle (소형 위성 발사체의 페이로드 페어링부에 대한 음향 가진 시험)

  • Park, S.H.;Seo, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.220-223
    • /
    • 2007
  • Acoustic test of the payload fairing of Korea satellite launch vehicle was conducted to verify the performance of acoustic protection system installed inside the payload fairing. This paper briefly introduces the acoustic test procedures and its results. Overall 148 dB acoustic loads were exerted on the payload fairing structures which mated with the upper stage structure of the launch vehicle. In order to verify the increase of insertion loss by the acoustic protection system, two kinds of test were performed. One is conducted with acoustic protection system and the other without acoustic protection system. Internal acoustic loads as well as external ones were measured and the measured insertion losses were compared with the requirement. The results showed that the acoustic protection system increases the insertion loss by more than 6 dB above 125 Hz. They also indicated that some design modification of Helmholtz resonator array is required to increase the insertion loss at a cavity resonant frequency.

  • PDF