• Title/Summary/Keyword: Launch Complex System

Search Result 57, Processing Time 0.022 seconds

Development Test of Pyro-Valve for Cryogenic Gaseous Helium in Pressurization System of Launch Vehicle (발사체 가압시스템용 극저온 헬륨가스 파이로밸브 개발시험)

  • Chung, Yong-Gahp;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.293-297
    • /
    • 2009
  • Valves, which are used to supply or block the flow of cryogenic pressurant in the pressurization system of liquid-propellant propulsion system in a launch vehicle, are pneumo-actuated valve, solenoid valve, pyro-valve, etc. Both pneumo-actuated valve and solenoid valve have more complex structure and are heavier than pyro-valve. For this study, a couple of pyro-valves, which are applicable to cryogenic and high-pressure fluid (cryogenic gaseous helium), have a simple structure, and are comparably light, are designed, manufactured, and tested (proof-pressure/leakage tests, performance test, vibration test, helium supply tests).

  • PDF

Cost Model for Annual Cost Spread Estimation of Space Launch Vehicle Development (발사체 개발의 연차별 비용 추정을 위한 비용모델 개발)

  • Kim, Hong-Rae;Yoo, Dong-Seo;Choi, Jong-Kwon;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.576-584
    • /
    • 2011
  • In order to develop a launch vehicle successfully, it is important to estimate development costs accurately but it is also important to plan the annual budget. In this paper, the statistical method was utilized for cost spreading. For cost spread modeling, the suitability of the model by analyzing several statistical models was evaluated and consequently, the beta-distribution model has been selected. In this study, the validity of the annual estimation cost model was verified through the comparison of the actual development cost distribution and the estimating cost distribution of Space Shuttle Main Engine. In addition, this paper estimated the annual budget required for the development of the KSLV-II using currently allocated cost for successful development. It is anticipated that the present cost spread model can be applied to not only launch vehicle development but also other large complex system development.

Study on KSLV-II Program's Budget Execution Management (한국형발사체개발사업 예산 집행 관리 방안 연구)

  • Lee, Hyo Young;Cho, Dong Hyun;Yoo, Il Sang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.73-78
    • /
    • 2017
  • Space development program is a large and complex system consisting of a multi-disciplinary high-end technologies and it is important to implement a program management system connected with systems engineering as well as to develop critical technologies. Major organizations in space fields carry out effective budget execution management and operation according to the strategy and objective of space development using information systems. Korea Space Launch Vehicle II(KSLV-II) has adopted a cost management plan using a system engineering to complete the program within the assigned schedule and budget. This paper introduces the budget execution management system applied to KSLV-II budget management and the budget execution dashboard system for supporting program decision making.

Basic Design of Propulsion System Test Complex for KSLV-II (한국형발사체 추진기관시스템 시험설비 기본설계안)

  • Yu, Byung-Il;Kim, Ji-Hoon;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.489-492
    • /
    • 2012
  • Basic design result for propulsion system test complex(PSTC) of KSLV-II is briefly described. KSLV-II is a three stage launch vehicle will be used liquid rocket engine for each. PSTC is will be used for development and performances qualification tests of $1^{st}/2^{nd}/3^{rd}$ propulsion systems for KSLV-II. In the future, this result will be applied to critical design and manufacturing of PSTC after deciding lay-out and operating program.

  • PDF

Research on the Assembling Process of 7 tonf Class Small Liquid Rocket Engines (7 tonf 급 소형 액체로켓엔진 조립 체계 연구)

  • Moon, In Sang;Moon, Il Yoon;Jeong, Eun Hwan;Park, Soon Young
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.48-53
    • /
    • 2017
  • Liquid rocket engines (LREs) are very complex systems that include combustion chambers, turbopumps, gas generators, ducts and tubes, valves and etc. Most components of the LREs require higher than or equal to level 6 IT (ISO Tolerance). The components along with pipe line and/or tubing must dispose not to interfere each other. In addition, effectiveness of maintenance and service after assembling should be considered when the allocation of the components are determined. Especially at the stage of the development, tolerance accumulations or unpredictable errors may result in misalignment and/or mismatches at interfaces of the parts. Namely, it is the engine assembling process that many inherent risks are realized and crises or incidents occur. Therefore, a rapid reaction system should be prepared. In this research, 7 tonf class liquid rocket assembling process was studied and actual building steps were introduced.

Spin-offs from space technology to cultural life

  • Kim, Jong-bum
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • In this paper, we examine the points of similarity and difference between Korea, Japan, and the USA in terms of the spin-off effects of space technology on cultural life. In Japan and the USA, spin-off effects of space development research by government funded research centers are diffusive while in Korea they are interruptive. Spin-offs of research results impact cultural life via technology transfer and commercialization in businesses. This is because the Korean aerospace industry has progressed largely based on an overall system, but the promotion of internal parts and sub-systems, which can trigger technological development and spin-off effects in manufacturing, has been neglected. In the case of the KARI, the government funded research center, we argue that it is necessary for KARI to devote more resources to transfer (or promote spin-offs of) space technology to small and medium-sized businesses and other industries.

Web Services-based Multidisciplinary Design Optimization System (웹 서비스 기반 MDO 시스템)

  • Lee, Ho-Jun;Lee, Jae-Woo;Lee, Jeong-Oog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1121-1128
    • /
    • 2007
  • MDO(Multidisciplinary Design and Optimization) can be applied for design of complex systems such as aircraft and SLV(Space Launch Vehicle). MDO System can be an integrated environment or a system, which is for synthetic and instantaneous analysis and design optimization in various design fields. MDO System has to efficiently use and integrate distributed resources such as various analysis codes, optimization codes, CAD, DBMS, GUI, and etc. in heterogeneous environments. In this paper, we present Web Services-based MDO System that integrates resources for MDO using Globus Toolkit and provides organic autonomous execution using automation technique such as Workflow system and agent. And also, it provides collaborative design environment through web user interfaces.

Design of muon production target system for the RAON μSR facility in Korea

  • Jeong, Jae Young;Kim, Jae Chang;Kim, Yonghyun;Pak, Kihong;Kim, Kyungmin;Park, Junesic;Son, Jaebum;Kim, Yong Kyun;Lee, Wonjun;Lee, Ju Hahn
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2909-2917
    • /
    • 2021
  • Following the launch of Rare Isotope Science Project in December 2011, a heavy ion accelerator complex in South Korea, named RAON, has since been designed. It includes a muon facility for muon spin rotation, relaxation, and resonance. The facility will be provided with 600 MeV and 100 kW (one-fourth of the maximum power) proton beam. In this study, the graphite target in RAON was designed to have a rotating disk shape and was cooled by radiative heat transfer. This cool-down process has the following advantages: a low-temperature gradient in the target and the absence of a liquid coolant cooling system. Monte Carlo simulations and ANSYS calculations were performed to optimize the target system in a thermally stable condition when the 100 kW proton beam collided with the target. A comparison between the simulation and experimental data was also included in the design process to obtain reliable results. The final design of the target system will be completed within 2020, and its manufacturing is in progress. The manufactured target system will be installed at the RAON in the Sindong area near Daejeon-city in 2021 to carry out verification experiments.

On an Enhanced Model of System Readiness Level by Incorporating Safety for the Development of Live Fire Test Systems (실사격 시험시스템의 효율적인 개발을 위해 안전도 반영을 통해 개선된 시스템 성숙도 모델에 관한 연구)

  • Ye, Sung Hyuck;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.195-204
    • /
    • 2015
  • The live fire test has been playing a critical role in evaluating the goals-to-meet of the weapon systems which utilize the power of explosives. As such, the successful development of the test systems therein is quite important. The test systems development covers that of ranges and facilities including system-level key components such as mission control, instrumentation or observation, safety control, electric power, launch pad, and so on. In addition, proper operational guidelines are needed with well-trained test and operation personnel. The emerging weapon systems to be deployed in future battle field would thus have to be more precise and dynamic, smarter, thereby requiring more elaboration. Furthermore, the safety consideration is becoming more serious due to the ever-increasing power of explosives. In such a situation, development of live fire test systems seems to be challenging. The objective of the paper is on how to incorporate the safety and other requirements in the development. To achieve the goal, an architectural approach is adopted by utilizing both the system components relationship and safety requirement when advanced instrumentation technology needs to be developed and deteriorated components of the range are replaced. As an evaluation method, it is studied how the level of maturity of the test systems development can be assessed particularly with the safety requirement considered. Based on the concepts of both systems engineering and SoS (System-of-Systems) engineering process, an enhanced model for the system readiness level is proposed by incorporating safety. The maturity model proposed would be helpful in assessing the maturity of safety-critical systems development whereas the costing model would provide a guide on how the reasonable test resource allocation plan can be made, which is based on the live fire test scenario of future complex weapon systems such as SoS.

Operating Process Design and Verification on the Oxidizer Filling Ground Facility for Liquid Rocket (액체로켓 산화제 지상공급시스템의 운용 프로세스 설계 및 검증)

  • Kim, Ji-Hoon;Park, Soon-Young;Park, Pyun-Goo;Yoo, Byung-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.781-783
    • /
    • 2011
  • The oxidizer filling system, ground facility of the launch complex, should accept difficult requirements from the launcher sufficiently. The launcher do not have unnecessary insulators for mass reduction and manages liquid oxygen mass fastidiously to satisfy the mission requirement. So, the ground facility should be able to accept its requirements, then we should make the operating process being adjusted. In this paper, the operating process design and verification results on the oxidizer filling ground facility for liquid rocket is demonstrated.

  • PDF