• Title/Summary/Keyword: Lattice distortion

Search Result 97, Processing Time 0.03 seconds

A Correlative Approach for Identifying Complex Phases by Electron Backscatter Diffraction and Transmission Electron Microscopy

  • Na, Seon-Hyeong;Seol, Jae-Bok;Jafari, Majid;Park, Chan-Gyung
    • Applied Microscopy
    • /
    • v.47 no.1
    • /
    • pp.43-49
    • /
    • 2017
  • A new method was introduced to distinguish the ferrite, bainite and martensite in transformation induced plasticity (TRIP) steel by using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). EBSD is a very powerful microstructure analysis technique at the length scales ranging from tens of nanometers to millimeters. However, iron BCC phases such as ferrite, bainite and martensite cannot be easily distinguished by EBSD due to their similar surface morphology and crystallographic structure. Among the various EBSD-based methodology, image quality (IQ) values, which present the perfection of a crystal lattice, was used to distinguish the iron BCC phases. IQ values are very useful tools to discern the iron BCC phases because of their different density of crystal defect and lattice distortion. However, there are still remaining problems that make the separation of bainite and martensite difficult. For instance, these phases have very similar IQ values in many cases, especially in deformed region; therefore, even though the IQ value was used, it has been difficult to distinguish the bainite and martensite. For more precise separation of bainite and martensite, IQ threshold values were determined by a correlative TEM analysis. By determining the threshold values, iron BCC phases were successfully separated.

Superconducting properties and microstructure of electron beam irradiated MgB2 superconductors

  • Kim, C.J.;Lee, Y.J.;Cho, I.H.;Jun, B.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.18-22
    • /
    • 2022
  • The effect of electron beam (EB) irradiation on superconducting properties and microstructures of MgB2 bulk superconductors were investigated. At E-beam doses of 1×1016 e/cm2 and 1×1017 e/cm2, the effect of irradiation on a superconducting transition temperature (Tc) of MgB2 was weak. As a dose increases to 5×1017 e/cm2, Tc decreases by 0.5 K. The critical current density (Jc) measured at 4.2 K and 20 K, and 0 T - 5 T increases slightly as exposure time increases. X-ray diffraction for the irradiation surface of MgB2 shows that the diffraction intensity of (hkl) peaks decreases proportionally as the exposure time increases. This indicates that the crystallinity of MgB2 was degraded by irradiation. TEM investigation for the irradiated sample showed distorted lattice structure, which is consistent with the XRD results. The Jc increase and Tc reduction of MgB2 by irradiation are believed to be caused by the lattice distortion.

Lithium ionic conductivitis of $(Li_{1/2}La_{1/2})_{1-y}Sr_yTi_{1-x}Mn_xO_3$ ($(Li_{1/2}La_{1/2})_{1-y}Sr_yTi_{1-x}Mn_xO_3$ 계의 리튬이온전도특성)

  • 정훈택
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.245-250
    • /
    • 1999
  • The effect of cation substitution on the inonic conductivity was studied in $(Li_{0.5}La_{0.5})_{1-y}Sr_yTi_{1-x}Mn_xO_3$ system. In case of Sr substitution, the ionic conductivity abrubtly decreased over y=0.05. This may be caused by the decrease of lithium contents which contribute to lithium inonic conductivity. Jahn-Teller distortion as well as lattice parameter variation influenced the inonic conductivity in case of Mn substitution. A and B-site cations effects on the conductivities were found to be independent, and the ionic conductivity as high as $2.8{\times}10^{-2}$S/cm was obtained in x=0.0006 and y=0.05.

  • PDF

Application of Computational Mineralogy to Studies of Hydroxyls in Clay Minerals (전산광물학을 이용한 점토광물 내의 수산기 연구 가능성)

  • Chae, Jin-Ung;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.271-281
    • /
    • 2014
  • The physicochemical properties of clay minerals have been investigated at the atomistic to nano scale. The microscopic studies are often challenging to perform by using experimental approaches alone. In particular, hydroxyl groups of octahedral sheets in 2:1 clay minerals have been hypothesized to impact the sorption process of metal cations; however, X-ray based techniques alone, a common tool for mineral structure examination, cannot properly test the hypothesis. The current study has examined whether computational mineralogy techniques can be applied to examine the hydroxyl structures of clay minerals. Based on quantum-mechanics and molecular-mechanics computational methods, geometry optimizations were carried out for representative dioctahedral and trioctahedral phyllosilicate minerals. Both methods well reproduced the experimental lattice parameters; however, for structural distortion occurring in the tetrahedral or octahedral sheets, molecular mechanics showed significant deviations from experimental data. The orientation angle of the hydroxyl with respect to (001) basal plane is determined by the balance of repulsion between the hydroxyl proton and Si cations of tetrahedral sites; the quantum-mechanics method predicted $25-26^{\circ}$ for the angle, whereas the angle predicted by the molecular-mechanics method was much higher by $10^{\circ}$ (i.e., $35^{\circ}$). These results demonstrate that computational mineralogy techniques are a reliable tool for clay mineral studies and can be used to further elucidate the roles of hydroxyls in metal sorption process.

The Study of Effectiveness of 3 Spot DR for the Whole Spine Radiography with Comparison of Phantom Distortions (3 Spot DR를 이용한 척추 전장 촬영 시 모형 왜곡도 비교를 통한 유용성 연구)

  • Kim, Sang-Hyun;Lee, Mi-Hwa
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.345-351
    • /
    • 2014
  • The purpose of this study is to offer more accurate information in whole spine examination of 3 spot DR through the comparative study about image distortion as making the flat phantom and measuring horizontal, vertical ratio and cobb angle of the virtual. We produced $H(40cm){\times}V(116cm){\times}D(2.3cm)$ flat acrylic phantom with lattice type of lead plate. We took projection respectively 3 times, total 9 times in each equipments using manufactured phantom as changing OFD to 6, 12, 18 cm. We measured a horizontal and vertical length of lead lattice and calculated the ratio. As appointing arbitrary points in the phantom and we measured cobb angle. The results of horizontal, vertical ratio measured CR type 0.98~1.01, scan DR type 0.96~0.97 and 3 spot DR 0.99~1.01. Cobb angle measured $52.5{\sim}53.3^{\circ}$, $52.1{\sim}54.3^{\circ}$ and $52.8{\sim}53.2^{\circ}$. Finally we can say that 3 spot DR method is an accurate method without any distortion in whole spine radiography.

XRD and TEM Investigations of Structures and Phase Transformations in Albite (XRD와 TEM을 이용한 알바이트의 구조 및 상전이 연구)

  • 김윤중;이영부
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.91-106
    • /
    • 2003
  • XRD results on annealing studies of Na-feldspars (Amelia albite) show rapid changes in the lattice parameters of the $1073^{\circ}C$-heated samples owing to disordering of Al and Si as well as lattice distortions upon quenching of the heated specimens. While a low albite transformed to a high albite by 7-days annealing at $1073^{\circ}C$, it remains as an early intermediate albite even by 140-days annealing at $924^{\circ}C$ due to the slower Al-Si disordering rate. From the heated samples tweed structures of $100∼200\AA$ were typically observed by TEM, which showed different ways of development between the $1073^{\circ}C$ -heated one and the $923 ^{\circ}C$ -heated one. The former locally trans-farmed to rnicrostructures similar to albite twin, while the latter transformed to domain structures containing albite twin plane in the wider area. The origin of tweed structures is suggested to be formation of incipient twins (albite twin and pericline twin) to reduce the lattice instability which is increased by disordering of Al and Si as well as quenching.

X-ray Powder Diffraction Structural Phase-transition Study of $(Na_{0.7}Sr_{0.3})(Ti_{0.3}Nb_{0.7})O_3$using the Rietveld Method of Analysis (분말 X-선 회절의 리트벨트 해석법을 이용한 $(Na_{0.7}Sr_{0.3})(Ti_{0.3}Nb_{0.7})O_3$계에서의 구조 상전이 특성연구)

  • Jeong, Hun-Taek;Kim, Ho-Gi
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.748-753
    • /
    • 1995
  • Solid solution of NaNb $O_3$70 mol% and SrTi $O_3$30 mol% was single phase. A broad dielectric peak was found at about l00K. Crystal structure was analysed at room temperature and 12K using Rietveld analysis. The unit cell was assigned to have a a doubled lattice parameter of simple perovskite sturcture at room temperatue, the structure was orthorombic with space group Pmmn. At 12K, the structure was also orthorombic with space group Pnma. This structure change with temperature was due to the distortion of oxygen octahedron. This distortion of oxygen octahedron was made by the decrease of (Ti, Nb)-O bounds length with no variation of (Ti, Nb)-O-(Ti, Nb) bound angle. Therefore the broad dielectirc peak about l00K was attributed to the structural change casued by oxygen octahedron distortion.

  • PDF

Optimum Nonseparable Filter Bank Design in Multidimensional M-Band Subband Structure

  • Park, Kyu-Sik;Lee, Won-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.24-32
    • /
    • 1996
  • A rigorous theory for modeling, analysis, optimum nonseparable filter bank in multidimensional M-band quantized subband codec are developed in this paper. Each pdf-optimized quantizer is modeled by a nonlinear gain-plus-additive uncorrelated noise and embedded into the subband structure. We then decompose the analysis/synthesis filter banks into their polyphase components and shift the down-and up-samplers to the right and left of the analysis/synthesis polyphase matrices respectively. Focusing on the slow clock rate signal between the samplers, we derive the exact expression for the output mean square quantization error by using spatial-invariant analysis. We show that this error can be represented by two uncorrelated components : a distortion component due to the quantizer gain, and a random noise component due to fictitious uncorrelated noise at the uantizer. This mean square error is then minimized subject to perfect reconstruction (PR) constraints and the total bit allocation for the entire filter bank. The algorithm gives filter coefficients and subband bit allocations. Numerical design example for the optimum nonseparable orthonormal filter bank is given with a quincunx subsampling lattice.

  • PDF

Temperature and Atmosphere Dependence of the Electrical Conduction of the Vacuum Evaporated Thin Metal Films on Glass Substrate (진공증착된 금속박막의 전기전도성에 대한 온도와 분위기 의존성)

  • 김명균;박현수
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.6
    • /
    • pp.437-442
    • /
    • 1991
  • Temperature and atmosphere dependence of electrical conduction of the metal Cu, Ag, Au films, vaccum evaporated on glass, was investigated. The structural changes of the metal films were examined by SEM and high temperature XRD. The electrical resistance slightly increased with initial temperature increase up to the inflection point and decreased to minimum value, after this rapidly increased with further temperature increased below minimum. These phenomena were caused by the thermally induced film failure as a result of the mass transport. The temperature for the film failure increased in the order of O2, Air, Vacuum, N2, Ar in Cu, Ag films and Air, Vacuum, N2, Ar in Au film. The increase of resistance at the lower temperature range was attributed to the lattice distortion by disordered crystal structure, while the decreasing resistance was attributed to the removal of structural defects and film densification.

  • PDF

Electronic structure of $CaRuO_3$ (CRO) for buffer layer between superconductor and metal substrates (초전도체 $YBa_2Cu_3O_{7-X}$(YBCO)와 금속 기판사이의 계면 문제 해결을 위한 $CaRuO_3$ (CRO)의 전자 상태 계산)

  • 백한종;김양수;노광수
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.217-217
    • /
    • 2003
  • 초전도체 선재를 제작하기위해 YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) 와 Ni substrates사이의 계면 문제를 해결하기 위한 buffer layer로써 CaRuO$_3$ (CRO) thu film이 제안되었는데, 이런 buffer layer의 조건으로는Ni metal과 YBCO superconductor사이의 화학적 반응이 없어야 하고 metal component가 YBCO로 diffusion되는 것을 막아주어야 하며 substrates의 산화를 막아주어야 한다. 이런 조건을 만족시키는 것 중에서 CRO thin film이 가장 적절하였지만, CRO의 orthorhombic구조의 distortion에 의만 lattice mismatch 문제가 발생하였다. 이러한 문제를 해결하기 위해 이론적인 구조 분석을 통한 CRO의superconductor buffer layer로써의 가능성을 검토해 보는 것이 목적이다.

  • PDF