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Optimum Nonseparable Filter Bank Design in Multidimensional
M-Band Subband Structure

Kyusik Park®,

Woncheol Lee*™

ABSTRACT

A rigorous theory for modeling, analysis, oplimum nonseparable filler bank in multidimensional Af-band quantized sub-

band codec are developed in this paper. Each pdf-optimized quantizer is modeled by a nonlinear gain-plus-additive uncor-
related noisc and embedded into the subband structure. We then decomposc the analysis/synthesis filter banks inlo their
polyphase components and shift the down-and up-samplers 1o the right and left of the analysis/synthesis polyphase

matrices respectively. Focusing on the slow clock rate signal between the samplers, we derive the exact cxpression {or the

output mean square quantization error by using spatial-invariant analysis. We show thal this error can be represented by

two uncorrelated components:a distortion component due {o the quantizer gain, and a random aoise component due to

fictitious uncorrelated noisc at the quantizer. This mcan square crror is then minimized subject to perfect reconstruction
(PR) constraints and the total bil allocation for the enlise filter bank. The algorithm gives oplimum filter coefficients and
subband bit allocations. Numerical design example for the optimum nonseparable orthonormal filter bank is given with a

quincunx subsampling latticc.

[.INTRODUCTION

Subband coding has heen proposed for many applicat-
ions in the ficld of speech, image, and video compression.
Presently the DCT is the induslry standard; however fu-
ture application such as MPEG-4 may require grealer
compression and performance than lhat oblained from
the block transform coding.

In the abscnce of guanlizatton noise, prefect recon-
struction(PR) theory for multidimensional subband filter
bank(FB) is well established[1]-[5). The multidimensional
multirate FB is not a simple extension of the one-dimens-
ional(1-D) FR except for the separable case. The main
complication arises from the subsampling lattice 2 in the
decimator{1]6]. In 1-D, thc downsampler retains every
Mth sample in the scquence, discards the rest, and then
reindexes the time scale. In multiple-dimension, the deci-
mator retains samples located on a subsampling lattice,
which is represented by the subsampling mairix D2, with
integer elements. Thus the filter design problem neccess-
arily depends on the choice of sampling matrix. For the

separable FB with a diagonal matrix D, most of the
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results from |-D FB can be easily extended to the mul-
tiple dimension in a separable fashion along cach dimen-
sion[5]. However, the nonscparablc case, is far more com-
plex and the effect of sampling matrix D must be care-
fully considered inlo the design problem.

Most of the previous works in multidimension have
been developed under the assumption of no quantization
noise and of simple separability conditions of the filter
bank. Woods and O'Neil[3] have introduced 16 bands
scparable fiiter bank system to code pictures with DPCM.
But they used existing quadralure mirror filter(QMF) to
split 1the subband images. Westerink, ct all7] also decom-
posed the image into 16 scparable subbands, but encoded
with a vector quantization. In ref. (8], they also showed
the analysis of a two band quantized FB structure and
used a QMF on the aclual tesl image in a deterministic
way. Vandendorpe]9] assigned some subjectlive weights to
different frequency bands and minimized the weighted
quanlization noise. But he assumed a simple input-inde-
pendent white additlive guantization noise model which is
not valid for the pdf-optimized quantizer(10). Yet neither
the actual mathematical analysis of the quantization noise
nor the optimum nonseparable filter bank design with
quanlization errors embedded explicitly in the criterion
have been reported in multidimensional filter bank so far.

This paper is an extension of the onc-dimensional work

in [IE) to mulliple-dimensions. A kecy approach is the
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model-based decorrelation of the quantization noise from
the input signal by wse of the gain-plus-additive noise
model for the pdf-optimized quantizer. We then embed
the quanlizer notse model into the subband structure,
Using polyphase decomposition of the FBs, we calculate
the output MS quantization error as the sum of two
components;a distortion and a random componcnt. This
mean square error{MSE) serves as the measure in the de-
sign and cvaluation of quantized subband filter banks.
This paper oulline is as follows:Section [I provides a
brief review of the quantization model and the basic not-
ations and definitions in multidimensional mullirate FB
theory. In Seclion Iil, we develop lhe oplimum multidi-
mensionat M-band filter bank structurc in the presence of
pdf-optimized quantizers as a generalization o 1-D filter
bank theory presenled in {It]. We dcrive the multi-
dimensional version of MS quantization error formuly at
the reconstrucled oculpul by using the polyphase de-
composition ol the filter bank. As we will see, the deri-
vation is quile straightforward, bul the underlying theory
is quite different from the 1-D case. Section 1V describes
the oplimum filter design melhodology in multidimens-
ional subband structures. Specific design example for the
nonscparable orthonormal FB with quincunx sampling

matrix is investigated.

. PRELIMINARIES

In this section, we first review the gain-plus-additive
noise model for the pdf-optimized quantizer advanced by
Jayant & Noll. Then we brieflly summarize the basic not-
ations and definittons in multidimensional multicate (ilter

bank theory thal will be used throughout this paper,

A Quantization Model

Fig. 1 {a) Pdf-optimized quantizer, (b) gain-plus-addilive noise
model.

Fig. 1(a) shows the block diagram representation of the
pdf-optimized quantizer: v, the signal to be quantized, is a
inpul random variable with a known pdf p.(v) with zero

o 2.4, - ~ .
mean and variance 7, ; ¢ is (he quantized output;and 7 is

the quantization error with variance

4 +a - - +a:

ol=["" B piprdi= {v-vY p) dv (H
- -

The guantizer that minimizes this MSE is called the
pdf-optimized Lloyd-Max quantizer[12]{13].

For the pdf-optimized quantizer, it can be shown that
the quantization c¢rror is unbiased and that the error is
arthogonal to the quantizer output|6][10]

ElD]=0, E[ez]=0. 2

This implies quantization crror @ is correlated with the
input », and that the variance of ¥
si=al-a}. 3
Hence, the input-independent-additive noise model is only
a approximalion (o the pdi-optimized guantizer.

Fig. 1(b) shows a gain-plus-additive noise model rep-
reseniation which is to modcl the quantizer. As suggested
by Jayant & Noll[10), we can choose the input signal-de-
pendent gain « and the variance of random ficlitious noise
¥ as

:
a=]-——=

2 1
"

el=all —a)ol=adqal. {(4)

Then this choice force ¥ and v 1o be uncorrelated such
that

Elrv|=FElv—av-t)v]=(1~a)ol -0l =0, 5
further it salisfies the conditions in (2).

B. Review of Notations and Definitions in Multidi-
mensional Filter Bank | 1116

Let the N-dimensional discrete signal x(z) be defined on

an integer lattice N\, where 22=(n:, 72, -+, ny)" is the set

of all integer vectors. With the transform vartables and

integer matrix D

2=z, 2, -, 2n),

w= lwi, wy, -, wyl,

dll d|2 e le

dNJ dNZ dNN

we define



24 2 gdn 24w
d: do  ,du dm
24 z z ez
2P=1= = . )
24n g i 29w

Then the Z and Fourier transform of the discrele N-di-

mensional signal x(2) can be writlen as

X@)= ¥ x(mz", > X&)=Y xin)je™M. (8)
nch I_IE/\
Let Ap be a sampling sublattice which is the sel of all in-
teger vectors m={(my . ma, -, »v)" generated by m=Dn
of the nonsingular integer sampling matrix D for some
inteper vectors #. A given sublatlice Ap can be described
by more than onc sampling matrix and the sampling ma-
trices arc relaled to each other by postmultiplication by

an integer matrix with determinant equal 1o 1. For ex-

ample, the following two-dimensional quincunx sampling
matrices[4]( 5]

)

Fig. 2 Sublattice defined by . D)( * i coscl veclors associated

The coset is the set of points oMained by shifting the
origin of sublatticc Ap defined by sampling matrix D by
inleger vectors & in the unit cell. The inleger shift vectors
& are called the cosel vectors associated with D and there
are exaclly M= detD] of distinct cosel vectors denoted by
{ko, &1, -, ka~1}. For example, with the quincunx sam-

pling matrix D) in (9), the associated coset vectors are
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0 1 .
fel ) we())
0 0

shown( ¢ ) in Fig. 2. Clearly, the union of two cosels as-
sociated with above coset vectors for a given sublattice

yiclds the rectangular lattice.

z(n) . v(n) . y(n)

Fig. 3 Representation of N-dimensional down-and up-sampling.

The sampling operations in multidimensional filter banks

is represented diagramatically in Fig. 3 and defined by

AD™'n) D™ 'n an integer vector

w(n) = x(Dn), y(g)=’ , (11}
0, otherwisc
sa that
xn), nEAN
T (12)
0. otherwise

The downsampler accepts samples lying on the sublattice
Ag, discards others, and reindexes the spatial axes. The z-
transform is given by

ML

V== T Ko e o) a3
- M

where D1 is transpose of D' and M =|det D|. The up-
sampler takes poinls {2} on a rectangular Jattice and

maps them into the sublattice A p and the z-transform is
Y(2)=¥(2"). (14)
Thus the combined operation from input to output yiclds

l LT} s
Y(2)=—— T XzeP'h) (19)
M -
and the output is simply those input points that lie on the
sublaltice /Ay,
Throughout 1he resl of this paper, we will heavily rely

on the notations and definmitions from [11[6).

lll. Quantization Error Analysis in Nonseparable
N -dimensional M -Band Subband Structure

The nonseparable N-dimensional M-band FB with pdI-
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optimized quantizers is shown in Fig. 4(a). The structure
is maximally decimated (or critically sampled) if the num-
ber of channels is equal to M ={det2| and we will only
consider this case.

By using polyphase decomposition of the analysis/syn-

thesis filter bank, we can show that

Y hlDntkizon,

neE N

D=L 2B A2 s Bed2) =
t=4

Gil2) =MZ‘ g (e gedd= Y. gDntk)z?
1=0 neA (16)
for k=0, 1, ---, M —1. Notec that the positive exponent
shift vectors arc used at the synthests side to compensate
for the delays at the analysis side. We can also note the
difference in forming the polyphasc component of the
analysis/synthesis filters between the [-dimenston and the
N-dimenston filter bank. in 1-D, the coset vectors are the
points on the interval [0, M — 1] defined by the scalar fuc-
lor M. To get the analysis polyphase component, we shift

7

hx(n) by { and subsample the transtated Ax(% 1) by M to
get M +1) for each € [0, M ~1]. On the other hand,
to obtain the N-dimensional analysis polyphase expan-
sion, we select the N-dimensional coset veclors { &, &,
-+~ ka—y) associated with N XN sampling matrix /2 and
shift hie{n) by ks and downsample by D to gel /i Dn +-kp.
We can aslo make the same arguement about the syn-
thesis polyphase components.

Then the analysis/synthcsis filter bank can he repees-
ented in terms of the polyphase malrices #,(2) and 47 (2)
#l2) = (B (D hwexne, GHD =G p {2 v (17)
in the same manner as in the 1-D case[11], but with a vec-
tor notation. We then replace (he bank of pdf-optimized qu-
antizers by gain-plus-addilive nois¢ model, and the analy-
sis and synthesis filter banks by their polyphase equival-
ents in Fig. 4(b). In 1his case, the transposc of ,(2) emerges
as the synthesis polyphase matrix followed by positive ex-
ponent shift vectors. Now the system is spatially-invariant

AR D @ (] G T

@y i

Hy (5) Q(ﬂ) A

(e}

Fig. 4 (a) Multidimensional nons¢parable M-band FB wilh qu-

antizers, (b) polyphase equivalent structure, {c) ¢quivalent

veclor-matrix representalion.
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from &(n) to n(#) and can be represented by Fig. 4(c). In

this figure, A4 is diagonal gain matrix such that

A=diag[ao. ar, -, am- ),

S=diag|so, 51, -, Sy 1} (8}

where ai=1~a} fa} and o) =82 gl for i=0, 1, -,
M-I

From Fig. 4(c). the total quantization error 7,(2) is the
difference

NA2) = 72} — ni2)
=g, (2) (4 - D#2) E2) +47(2) R(2) (19

where [ is M XM identily matrix and {2} is the system
outpul withoul quantizers.,
For notational convenience, we define M X M diagonal

malrix

B2A—-I=diaglan—1t, ar—1, -, aeps— ], (20)

and subslitule decimaled signal F{z) =%z} £(z) into (19)
Lo obtain

12) = G,(2) BV (2) +4,(2) R(2)
=na4lz} +1u(2) 1)

where ng(z) is a signal distortion component due (o the
quantizer gains and #,(z) is a random component due to
the random fictitious noise,

Since vln) and (5} are uncorrelaled (rom the quantizer
modcl, we can derive the oulput power spectral densily

(PSD) of the guantizalion error 4{2)

Sna{2) =G (—2 1 BSW2)BIGI ()Y 4 gl (-2 S, (2)g ()
22)

where Sulz}. S,(z} arc PSD) matrices of subband v(n)
and random error #(zn) respectively. Then we can expand
the multidimensional polyphasc matrices #,(z), 4,(2) in

terms of matrix polynomials such that

2= L Hnz". GlD= L gpnz" 23

nE N ne A

where the M X M analysis/synihesis polyphase coelficient

malrices are

h(Dn+ky) holDnt+k)
Ri(Dn+ ko) h(Dn+k)

e hu(Dﬂ +EM.- )]

?A": B h|FDn +ku—|)

Ra (D ko) hy-i(Dr+R) - - Dnthky )
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LolDn—ko) goDn—k) - plDr—ky-\)
Goon= gdDn—rko) glDn—rk) - gdDn—Fkyu-1)
Bu—(Dn—Fke} gu(Dn—k) - guDn—ku-\)

(24}

Note that the negalive coset vectors {&;} are used in the
synthesis polyphase cocfficient matrix because of the posi-
live exponenl shift vectors al the synthesis side in Fig. 4
(a). Then the correlation malrix Ry,q (k) can be represent-
ed as

Ronk)=G) 4 B* Ra(B) % BlG, )T+, _y % R (R) % (4],

(25)
Al k=0, (25) becomes 1he covariance matrix
Ry J0) = Y ‘ﬂgBRv_v(j —Fk) BG4
JCA RCA
+L ¥ g;z Ry (J—R) Gy (26)

_}C/\ gCA

From Fig. 4(b). we can demonstrate that Ry,(0) is the
covariance matrix of the block outpul veclor

Yind=[nom), mind. -, e (1)}
=|}’{Dﬂ+_’{0)» ,V(D?l +.’?|)\ o, MDm Ry -]

Therefore, the MS quantizalion ercor at Lhe reconstructed

output can be defined as
o2 = Ef [ ytn)— y(m)* [ = —;! Trace| Ry, (0))

a2g}lal (27}
The distortion and random components of the error are

1 .
Gy = Trace[ 3 Z. G, BRuAj —K) BG,.),

PE A ke A

7i= oy Treel T I LRl =BG, 28)
and Relm) = £(v(n)v’ (2 +m)) and R, (m) = E[r(n)r"(n
+m)] are the correfation matrices of decimaled signal v
(r2) und random fictilious noise #{z). Note thal the sum-
mation index 7, &2 in (28) are not scalars, but N-dimen-
sional vectors corresponding to lhe polyphase coefficient
matrices.

In order to get a paramctrized multidimensional MSE
measure, we substitute the synthesis polyphase coefficient
matnces into (28). Then with some mathmatical manipu-

lation, we can show that the multidimensional version of
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the distortion component of the output MSE is

-1 M

M -
Z Z Z '-]}(“;_“Rm(m)

i=0 s=0

ol =
Y
T eygdlbom+D, 29)

1€

>

and the random component is

M-l M=

=L YT R m L elatom+ GO
M m >0 ;-4
where 0 =aio) = fi 2" Ral .
As in 1-D case in ref[11], we assumc R.(%) is diagonal
and white such that

Elrim)rin+m) =0l 8- ,;6(m).
RyAk) =diaglol,, al,, -+, ob. ] 3n

Then the distortion component remains as in (29}, but the

random component reduces to a simple form
’ M-l

oy=—r L o, L gild) (32)
M D en

so thal the total mean squarc(MS)} quantization error is
just the sum of (29} and (32).

From Fig. 4(a), the correlation function Ry, ,(n?) in (29)
can be represented as

R, (m)= El l’l’(ﬁ) l’j(ll +m)]
= E[x(Dn) x {D{n +m))] = Ry, . (Dn). (33)

Furthermore, we can express the subband coreclalion fun-
ction R,,,(?) in lerms of Lhe inpul correlation and the
analysis filter impulse responses such that

R!, !,(!n) = Rxx(ln) * kv(”}) ¥ h;( —@)
= TAL btk + D RADY Ruslm— o). (34)
& !

Thus we have formulated the N dimensional outpul MSE
explicilly in terms of the analysis/synthesis filtcr coeffici-
ents, the subsampling lattice, the input signal correlation
model, and implicitly in terms of the bit allocation for
cach band. QOur objective is to find the optimal PR filter
bank which minimizes this MSE for a given total bit allo-
cation. Note that the MS quantization error forraula in
(29} and (32) depends on the choice of sampling malrix D

rather than a scalar M as in [-D case.

V. Optimum Design for 2D Nonseparable
Orthonormal Filter Bank

In this scction, we will first consider 2D perfect recon-
struction conditions for the orthonormal filter bank as a
generalization of the |-D version. Then we will develop
the oplimum nonseparable 2[> orthonormal filter bank

struclure with quincunx sampling matrix.
A 2D Nonseparable Orthonormal Subband Filter Bank
Orthonormal filter banks satisly PR when the synthesis
polyphase malrix satsfies{slf6](t4)
g2y =z ka2 )], 3%)
from the sufficient PR condition

A2 =gl (Dmlz)=27¢1 (36)

For this case, the analysis/synthesis polyphase matrices
are lossless such that

#h a2 =1, and G2 gl =1 37

where #(2) £ #;(z /). In the spatiul-domain, this con-
dition becomes

pes(Dny =< hk), h{Dn +k) > =5,.5n). (38)
which 1mplies the following orthonormality conditions

Y. AR Dtk =0, X h(BYh(Dn+k)=0

kCA

ar

;

for ¥ #5. (39)

Eq. (39) states that each fitter { 2,(%}} is orthogonal Lo its
translate 2(Dn +k) and {2, (R)} is orthogonal to { 2dk))
and to all (ranslation in lattice of { 25(2)!. This s a lattice
extension of orthonormal PR condilion|5].

For the 2D (wo-channel orthonormal filter bank with

Holz,, 22} of size 1.1 X L{=cven) FIR filter, we choose

Hz, 2)=2z;" "7 0" H(—2,", —237")
Shim, ) =(— 1T =y L= ) —m)
(E[)]

to satisfy orthonormal PR conditions. Then the synthests
filters are spatially reversed versions of the analysis filters
{6114]

GO{ZI \ 23)=2|_“"_”Z§""_” Hn(z';l‘ z;l)

ey, m)=hlli—1—nm, Ly=1-m),
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GI(ZI‘ 23}22;""_”22—“"_” Hl(z.l'l, ze—l)
ngl(nl =l - —m, Ly—| — 1)
== 1P hylny ). (41)

From Eq. (37), we can sewrile the orthonormal PR con-
dition in (39) in terms of synthesis filters. Then the orth-
onormality condilions removes the cross-corrclation ef-
{ects between the channels in output MSE cxpression in
(29) and (32). Thus the 2D version of MS quantization

error formula reduces to

ai‘=a§ +a?
) ] A ) l M-I )
=— Y (ajs;— 1Yo} L 2
o 2 (ais; o,.., O, S, 0, 42
M i=0 “ ' M T “2)

where o} =2 s T AlRYaD) Relk —1).

B. Optimum Design Example for 2D Nonseparable
Orthonormal Suband Structure

Design cxample for the optimum neunseparable orthon-
ormal filter bank is presented for 2D 1wo-channel filter
bank with equal size 4 X 3 filters.

The optimization algorithm is based on the cxhaustive
search of all possible bit allocations consiraimed by the
tolal numher of bits. For cach hit combinations, we com-
putc the oplimal [lter cocfficients, and the associated
MSE. We choosc the onc with the smallest MSE among
them.

The tested input image is the standard 256X 256 LENA.
Thus we will show the analysis and simulation results of
the designed optimal fillers based on the LENA image.

We assume globally stationary source model lor the
test images which is a rather strong assumplion, but it
makes the analysis simpler. Then the separable autocor-

rclation funclion of AR(1) source can be writien as
Rulm,m) =g i p! (43)
1

(1—p T —p]) "

are directional correlation coeflicients. Neote Lhat the first-

where the input variance 6i= and pu, po

order corrclation coefficients px, p. can he easily deter-

mined from
Ph= R!x(l' 0)‘ S = R_"(O, §] (44)
with respect 1o normalized input variance o = 1. This

pair of parameters for LENA image is known to be pu=

0.942 and p, =0.972(6}.

To calculate the quantization error variance o in {29),
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we actually simulate the parameter 8, by using
ol = Bi27a], (45)

with the bits allocated to the Lloyd-Max quantizer. These
are shown in Fig. 5 for LENA inpul image.

(] .
i i
R3]

| ST LEX A

Fig. 5 #(R) vs. R for AR(1) gaussian LENA input image

The oplimal design for the nonseparable orthonormal
FB is shown in table 1 for input testing image. The corre-
sponding optimal impulse responses for festing image is
given in table 11,

Table 1. Rit allocations and simulated MSE for optimum non-
scparable orthonormal FB

R Ry R MSE
B
1.5 2 1 0.0925
2 3} | | 0.0382

Table Il Optimal filter coeflficients of LPF Ay(n . #1) for non-
scparable orlbonormal FR

|71, —~n; 0 i p
RS _ R=lbits/pixel
0 L 478e-31 021326 428334 |
I 0.73279 0.53332 6.525¢-02
2 0.29306 0.11875 0.16320
3 -4.067¢-34 4.747¢-02 -3.408¢-32
L R=1 ._S_biwm _
0 1772622 -0.21404 5.578¢-33
| 0.73124 0.53220 6.728¢-02
2 0.29409 0.12175 016729
3 -3.950¢-33 4.897-02 4.055¢-23
- R=2bits/pixd
0 3167e-21 -0.21405 1.385¢-32
1 0.73123 053218 6.730¢-02
3 0.29411 0.12177 0.16732
3 3218632 1.898e-02 -7.248¢-22

As we sec from Table I, the output MSE tend to de-

crease as the average bil rate R is increased. We also note
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the significance of the optimal bit allocations al the low
frequency side of subband image. This is because the
most encrgy of the input testing image resides tn the lower
frequencies than high frequencies. From Table I, we see
the insensitivity of the orthonormal FB to changes in av-
erage bit rate R although the output MSE is highly de-
pendent on them. Therefore it provides a robust system
to changes in input image statistics.

Fig. 6 shows the simulation results of the total output
MSE with distortion component g5 and random (ompon-
ent ¢2. It demonstrates that the random component is a

domminant crror source in the output MSE.

lJ)]

N Opr o thasouat

1
[
0.3 - o o vandan comp |
. PR distortiom conip
’\\ I
MEE 029 \\ i
0.1~ \\ ]
0 . i
\ ‘
. \\
0.0 L— e e e N

I ] 2 2.5 t

ft

Fig. 6 The output MSE comparison of designed optimum or-
thonormal FB with distorlion and random component of
error.

V. Conclusions

We have presented a methodology for the modelling.
analysis and design of the oplimum nonseparable fhiter
bank in the presence of quantization noise n multidimen-
sional M-band subband filter banks. The optimized struc-
ture consists of optimum filter coefficients, bit allocation
and pdf-optimized quantizer with PR constraints imposed
on the non-quantized codec.

We have designed the optimum orthonormal FB for
the nonseparable case and tested optimum design on the
standard LENA image. From the simulation resulls, we
observed two importatant facts about the designed opli-
mum system. First, the optimally designed orthonormal
subband system provides the robustness to the varations
of input statislics. In orther words, whatever the input
image is, wc might still use a fixed designed filters be-
causc of the robustness of the filter. Second, the random
component of error dominates in the total output MSE,
This indicates the possible reduction of total ouptut MSE

by monitoring the random component of error in proper

way. Yet this topic is under investigation.
Finally, we emphasize that our approach is so general
to apply the system of any dimensionality and any sub-

sampling matrices.
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