• Title/Summary/Keyword: Lattice defect

Search Result 100, Processing Time 0.028 seconds

A study of the synthesis and the properties on microwave dielectric material of $BaO-Sm_2O_3-TiO_2$ system ($BaO-Sm_2O3-TiO_2$계 마이크로파 유전체의 합성 및 그 특성에 관한 연구)

  • 이용석;김준수;이병하
    • Electrical & Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.274-283
    • /
    • 1997
  • These days, according to surprising development of communication enterprises, every soft of devices is getting smaller and cheaper. Among these Devices, microwave dielectric ceramics are studied and progressed briskly as the materials of dielectric resonator. Dielectric properties of BaO-S $M_{2}$ $O_{3}$-Ti $O_{2}$, one of the BaO Lnsub 2/ $O_{3}$-Ti $O_{2}$ (Ln=La, Sm, Nd, Pr…) system, synthesized by solid-reaction and coprecipitation method were investigated. Disk-type samples were sintered at 1250-1400.deg. C for 2hrs. As a result, single phase was not synthesized in both method. First created the second phase of S $M_{2}$ $Ti_{2}$ $O_{7}$, and then the last phase of $Ba_{3.75}$S $m_{9.5}$ $Ti_{18}$ $O_{54}$, Ti $O_{2}$, and $Ba_{2}$ $Ti_{9}$ $O_{20}$. When the sample was sintered at 1280.deg. C (in solid reaction method) and at 1310.deg. C (in coprecipitation method), it obtained highest dielectric constant (72.96 and 71.70, respectively) and high Q value. Above that temperature, dielectric constant and Q value decreased because of lattice defect according to oxygen vacancies........

  • PDF

The Characteristics of Titanium Disilicide Films following Manufacturing Methods (제조 방법에 따른 Titanium Disilicide 막의 특성)

  • Mo, Man-Jin;Jeon, Bup-Ju;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.354-361
    • /
    • 1999
  • The films annealed after physical deposition of titanium and chemical deposition of amorphous silicon by plasma were formed Si-rich titanium silicide with a good quality of crystallinity and had the various lattice structures due to orientation of lattices for epitaxy growth during annealing process. Band gap of the titanium silicide had 1.14~1.165 eV and the films annealed after chemical deposition of a-Si:H by plasma were influenced by a-Si and the dangling bond offered by desorption of hydrogen. Urbach tail ($E_0$) of the films annealed after physical deposition of Ti was nearly constant within a range of 0.045~0.05 eV, and the number of defect in films annealed after chemical deposition of a-Si:H by plasma was about 2~3 times more than that in annealed Ti/Si films.

  • PDF

Comparison of Growth Mode between GaAs and InAs Self Assembled Nanowire on Si(111) by Molecular Beam Epitaxy

  • Ha, Jae-Du;Park, Dong-U;Kim, Yeong-Heon;Kim, Jong-Su;Kim, Jin-Su;No, Sam-Gyu;Lee, Sang-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.325-325
    • /
    • 2012
  • 1차원구속 반도체인 nanowires (NWs)는 전기적, 광학적으로 일반 bulk구조와 다른 특성을 가지고 있어서 현재 많은 연구가 되고 있다. 일반적으로 NWs는 Au 등의 금속 촉매를 이용하여 성장을 하게 되는데 이때 촉매가 오염물로 작용을 해서 결함을 만들어서 bandgap내에 defect level을 형성하게 된다. 본 연구는 Si (111) 기판 위에 GaAs NWs 와 InAs NWs를 촉매를 이용하지 않고 성장 하였다. vapour-liquid-solid (VLS)방법으로 성장하는 GaAs NWs는 Ga의 droplet을 이용하게 되는데 Ga이 Si 기판위에 자연 산화막에 존재하는 핀홀(pinhole)로 이동하여 1차적으로 Ga droplet 형성하고 이후 공급되는 Ga과 As은 SiO2 보다 GaAs와 sticking coefficient 가 좋기 때문에 Ga drolept을 중심으로 빠른 선택적 성장을 하게 되면서 NWs로 성장을 하게 된다. 반면에 InAs NWs를 성장 할 시에 droplet 방법으로 성장을 하게 되면 NWs가 아닌 박막 형태로 성장을 하게 되는데 이것으로 InAs과 GaAs의 $SiO_2$와의 sticking coefficient 의 차이를 추측을 할 수 있다. InAs NWs는 GaAs NWs는 달리 native oxide를 이용하지 않고 InAs 과 Si 사이의 11.5%의 큰 lattice mismatch를 이용한다. 이종의 epitaxy 방법에는 크게 3종류 (Frank-van der Merwe mode, Stranski-Krastanov mode, Volmer-Weber mode)가 있는데 각기 다른 adatom 과 surface의 adhesive force로 나누어지게 된다. 이 중 Volmer-Weber mode epitaxy는 adatom 의 cohesive force가 surface와의 adhesive force보다 큰 경우 성장 되는 방식으로 InAs NWs 는 이 방식을 이용한다. 즉 droplet을 이용하지 않는 vapour-solid (VS) 방법으로 성장을 하였다. 이 때 In 의 migration을 억제하기 위해서 VLS mode 의 GaAs NWs 보다 As의 공급을 10배 이상 하였다. FE-SEM 분석 결과 GaAs NWs는 Ga droplet을 확인 할 수 있었고 InAs NWs는 droplet이 존재하지 않았다. GaAs와 InAs NW는 density와 length가 V/III가 높을수록 증가 하였다.

  • PDF

Oxygen Partial Pressure Dependency of Al-donor Solubility in ZnO (ZnO내 Al-도우너의 용해도의 산소분압 의존성)

  • 김은동;김남균
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1093-1096
    • /
    • 2001
  • The Solid solution of A $l_2$ $O_3$ into ZnO can be defined by the substitution reaction of Al$\^$3+/ ions into the Zn$\^$2+/ sites of ZnO crystal lattice, the tetrahedral interstices composed of four neighbor oxygen ions in the wurtzite structure. Since the reaction either creates new zinc vacancies or consumes the oxygen vacancies, it should be in equilibrium with ZnO nonstoichiometry and disorder reactions. The relationships make oxygen partial pressure P$\sub$o2/ control the concentrations of the vacancies and consequently limit the Al solubility in ZnO, [Al$\sub$zn/]$\sub$max/. This paper firstly reports with a refined model for defect quilibria in ZnO that the solubility decrease with the increase of P$\sub$o2/, [Al$\sub$zn/]$\sub$max/ P$\sub$o2/$\^$-1/4/.

  • PDF

Study on the Recovery and Recrystalligation of Cold-lolled Zr-based Alloys by Thermoelectric Power Measurement During Isothermal Annealing (TEP 분석을 이용한 냉간가공된 Zr-based 합금의 등온열처리에 따른 회복 및 재결정 거동에 관한 연구)

  • O, Yeong-Min;Jeong, Heung-Sik;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.483-491
    • /
    • 2001
  • The recovery and recrystallization behavior of cold-rolled Zr-based alloys during isothermal annealing at temperatures from $575^{\circ}C$ to $650^{\circ}C$ was studied by thermoelectric power and Vickers microhardness measurement. The recovery and recrystallization resulted in the increase of TEP doe to the extinction of lattice defect, vacancy, dislocation and stacking fault during isothermal annealing after cold- rolling. The completion of recrystallization could be determined much clearly by TEP behavior than by microhardness change in Zr-based alloys. Especially, the recovery and recrystallization were classified separately by TEP behavior in Zr-0.4Nb-xSn alloys. From the analysis of TEP behavior and microhardness, the addition of Sn caused to form the interaction between stain field and dislocation, which resulted in the delay of recovery in Zr-based alloys. The precipitation due the addition of Nb suppressed the grain growth after recrystallization effectively in Zr-based alloys.

  • PDF

TL Characteristics of CsI Single Crystal Scintillators and their Growth Conditions (CsI 단결정 섬광체의 열형광특성과 육성조건)

  • Doh, S.H.;Lee, W.G.;Hong, S.Y.;Bang, S.W.;Kang, K.J.;Kim, D.S.;Kim, W.;Kang, H.D.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.234-242
    • /
    • 1998
  • Changes in transmission and thermoluminescent characteristics were used in order to find out the optimum growth condition of CsI single crystal scintillators which were made relatively defect-free using Czochralski method. Impurity distribution in the crystals and the intensity and number of thermoluminescent glow peaks decreased as the process of crystallization was repeated. The direction of crystal growth turned out to be (110), the crystal structure of grown CsI was bee, and its lattice constant was found to be $4.568{\AA}$. The activation energy (trap depths) of CsI:3rd was 0.45 eV and its frequency factor was $5.18{\times}10^5\;sec^{-1}$.

  • PDF

Influence of Co incorporation on morphological, structural, and optical properties of ZnO nanorods synthesized by chemical bath deposition

  • Iwan Sugihartono;Novan Purwanto;Desy Mekarsari;Isnaeni;Markus Diantoro;Riser Fahdiran;Yoga Divayana;Anggara Budi Susila
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.179-192
    • /
    • 2023
  • We have studied the structural and optical properties of the non-doped and Co 0.08 at.%, Co 0.02 at.%, and Co 0.11 at.% doped ZnO nanorods (NRs) synthesized using the simple low-temperature chemical bath deposition (CBD) method at 95℃ for 2 hours. The scanning electron microscope (SEM) images confirmed the morphology of the ZnO NRs are affected by Co incorporation. As observed, the Co 0.08 at.% doped ZnO NRs have a larger dimension with an average diameter of 153.4 nm. According to the International Centre for Diffraction Data (ICDD) number #00-036-1451, the x-ray diffraction (XRD) pattern of non-doped and Co-doped ZnO NRs with the preferred orientation of ZnO NRs in the (002) plane possess polycrystalline hexagonal wurtzite structure with the space group P63mc. Optical absorbance indicates the Co 0.08 at.% doped ZnO NRs have stronger and blueshift bandgap energy (3.104 ev). The room temperature photoluminescence (PL) spectra of ZnO NRs exhibited excitonicrelates ultraviolet (UV) and defect-related green band (GB) emissions. By calculating the UV/GB intensity, the Co 0.08 at.% is the proper atomic percentage to have fewer intrinsic defects. We predict that Co-doped ZnO NRs induce a blueshift of near band edge (NBE) emission due to the Burstein-Moss effect. Meanwhile, the redshift of NBE emission is attributed to the modification of the lattice dimensions and exchange energy.

Surface Engineering of GaN Photoelectrode by NH3 Treatment for Solar Water Oxidation

  • Soon Hyung Kang;Jun-Seok Ha
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.388-396
    • /
    • 2023
  • Photoelectrochemical (PEC) water splitting is a vital source of clean and sustainable hydrogen energy. Moreover, the large-scale H2 production is currently necessary, while long-term stability and high PEC activity still remain important issues. In this study, a GaN-based photoelectrode was modified by an additional NH3 treatment (900℃ for 10 min) and its PEC behavior was monitored. The bare GaN exhibited a highly crystalline wurtzite structure with the (002) plane and the optical bandgap was approximately 3.2 eV. In comparison, the NH3-treated GaN film exhibited slightly reduced crystallinity and a small improvement in light absorption, resulting from the lattice stress or cracks induced by the excessive N supply. The minor surface nanotexturing created more surface area, providing electroactive reacting sites. From the surface XPS analysis, the formation of an N-Ga-O phase on the surface region of the GaN film was confirmed, which suppressed the charge recombination process and the positive shift of EFB. Therefore, these effects boosted the PEC activity of the NH3-treated GaN film, with J values of approximately 0.35 and 0.78 mA·cm-2 at 0.0 and 1.23 VRHE, respectively, and an onset potential (Von) of -0.24 VRHE. In addition, there was an approximate 50% improvement in the J value within the highly applied potential region with a positive shift of Von. This result could be explained by the increased nanotexturing on the surface structure, the newly formed defect/trap states correlated to the positive Von shift, and the formation of a GaOxN1-x phase, which partially blocked the charge recombination reaction.

High quality topological insulator Bi2Se3 grown on h-BN using molecular beam epitaxy

  • Park, Joon Young;Lee, Gil-Ho;Jo, Janghyun;Cheng, Austin K.;Yoon, Hosang;Watanabe, Kenji;Taniguchi, Takashi;Kim, Miyoung;Kim, Philip;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.284-284
    • /
    • 2016
  • Topological insulator (TI) is a bulk-insulating material with topologically protected Dirac surface states in the band gap. In particular, $Bi_2Se_3$ attracted great attention as a model three-dimensional TI due to its simple electronic structure of the surface states in a relatively large band gap (~0.3 eV). However, experimental efforts using $Bi_2Se_3$ have been difficult due to the abundance of structural defects, which frequently results in the bulk conduction being dominant over the surface conduction in transport due to the bulk doping effects of the defect sites. One promising approach in avoiding this problem is to reduce the structural defects by heteroepitaxially grow $Bi_2Se_3$ on a substrate with a compatible lattice structure, while also preventing surface degradation by encapsulating the pristine interface between $Bi_2Se_3$ and the substrate in a clean growth environment. A particularly promising choice of substrate for the heteroepitaxial growth is hexagonal boron nitride (h-BN), which has the same two-dimensional (2D) van der Waals (vdW) layered structure and hexagonal lattice symmetry as $Bi_2Se_3$. Moreover, since h-BN is a dielectric insulator with a large bandgap energy of 5.97 eV and chemically inert surfaces, it is well suited as a substrate for high mobility electronic transport studies of vdW material systems. Here we report the heteroepitaxial growth and characterization of high quality topological insulator $Bi_2Se_3$ thin films prepared on h-BN layers. Especially, we used molecular beam epitaxy to achieve high quality TI thin films with extremely low defect concentrations and an ideal interface between the films and substrates. To optimize the morphology and microstructural quality of the films, a two-step growth was performed on h-BN layers transferred on transmission electron microscopy (TEM) compatible substrates. The resulting $Bi_2Se_3$ thin films were highly crystalline with atomically smooth terraces over a large area, and the $Bi_2Se_3$ and h-BN exhibited a clear heteroepitaxial relationship with an atomically abrupt and clean interface, as examined by high-resolution TEM. Magnetotransport characterizations revealed that this interface supports a high quality topological surface state devoid of bulk contribution, as evidenced by Hall, Shubnikov-de Haas, and weak anti-localization measurements. We believe that the experimental scheme demonstrated in this talk can serve as a promising method for the preparation of high quality TI thin films as well as many other heterostructures based on 2D vdW layered materials.

  • PDF

Structural characterization of nonpolar GaN using high-resolution transmission electron microscopy (HRTEM을 이용한 비극성 GaN의 구조적 특성 분석)

  • Kong, Bo-Hyun;Kim, Dong-Chan;Kim, Young-Yi;Ahn, Cheol-Hyoun;Han, Won-Suk;Choi, Mi-Kyung;Bae, Young-Sook;Woo, Chang-Ho;Cho, Hyung-Koun;Moon, Jin-Young;Lee, Ho-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.23-23
    • /
    • 2009
  • GaN-based nitride semiconductors have attracted considerable attention in high-brightness light-emitting-diodes (LEDs) and laser diodes (LDs) covering from green to ultraviolet spectral range. LED and LD heterostructures are usually grown on (0001)-$Al_2O_3$. The large lattice mismatch between $Al_2O_3$ substrates and the GaN layers leads to a high density of defects(dislocations and stacking faults). Moreover, Ga and N atoms are arranged along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs heterostructures, stress applied along the same axis can also give rise to piezoelectric polarization. The total polarization, which is the sum of spontaneous and piezoelectric polarizations, is aligned along the [0001] direction of the wurtzite heterostructures. The change in the total polarization across the heterolayers results in high interface charge densities and spatial separation of the electron and hole wave functions, redshifting the photoluminescence peak and decreasing the peak intensity. The effect of polarization charges in the GaN-based heterostructures can be eliminated by growing along the non-polar [$11\bar{2}0$] (a-axis) or [$1\bar{1}00$] (m-axis) orientation instead of thecommonly used polar [0001] (c-axis). For non-polar GaN growth on non-polar substrates, the GaN films have high density of planar defects (basal stacking fault BSFs, prismatic stacking fault PSFs), because the SFs are formed on the basal plane (c-plane) due to their low formation energy. A significant reduction in defect density was recently achieved by applying blocking layer such as SiN, AlN, and AlGaN in non-polar GaN. In this work, we were performed systematic studies of the defects in the nonpolar GaN by conventional and high-resolution transmission electron microscopy.

  • PDF