• Title/Summary/Keyword: Lattice defect

Search Result 100, Processing Time 0.028 seconds

Kinetics and Mechanism of the Oxidation of Carbon Monoxide on CoO-$\alpha-Fe_2O_3$ Catalysts

  • Kim, Keu Hong;Choi, Jae Shi;Kim, Young Bae
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.389-393
    • /
    • 1987
  • The oxidation of carbon monoxide by gaseous oxygen on 0.53, 1.02, and 1.51 mol $\%$CoO-doped $-Fe_2O_3$ catalysts has been investigated in the temperature range from 340 to 480$^{\circ}C$ under various CO and $O_2$ partial pressures. The oxidation rates have been correlated with 1.5-order kinetics; the 0.5-order with respect to $O_2$ and the first-order with respect to CO. In the above temperature range, the activation energy is 0.34 $\pm$ 0.01 eV${\cdot}$$mol^{-1}$. The electrical conductivity of 0.53, 1.02, and 1.51 mol %CoO-doped $\alpha$-$Fe_2O_3$ has been measured at 350$^{\circ}C$ under various $P_{CO}and $P_{O_2}$. From the conductivity data it was found that $O_2$ was adsorbed on Vo formed by doping with CoO, while CO appeared essentially to be chemisorbed on the lattice oxygen of the catalyst surface. The proposed oxidation mechanism and the dominant defect were supported by the agreement between the kinetic data and conductivities.

Kinetics and Oxygen Vacancy Mechanism of the Oxidation of Carbon Monoxide on Perovskite$Nd_{1-x}Sr_xCoO_{3-y}$ Solutions as a Catalyst

  • Dong Hoon Lee;Keu Hong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.8
    • /
    • pp.616-622
    • /
    • 1994
  • The oxidation of carbon monoxide by gaseous oxygen in the presence of a powdered $Nd_{1-x}Sr_xCoO_{3-y}$ solid solution as a catalyst has been investigated in the temperature range from 150$^{\circ}$C to 300$^{\circ}$C under various CO and $O_2$ partial pressures. The site of Sr substitution, nonstoichiometry, structure, and microstructure were studied by means of powder X-ray diffraction and infrared spectroscopy. The electrical conductivity of the solid solution has been measured at 300$^{\circ}$C under various CO and $O_2$ partial pressures. The oxidation rates have been correlated with 1.5-and 1.2-order kinetics with and without a $CO_2$ trap, respectively; first-and 0.7 order with respect to CO and 0.5-order to $O_2$. For the above reaction temperature range, the activation energy is in the range from 0.25 to 0.35 eV/mol. From the infrared spectroscopic, conductivity and kinetic data, CO appears essentially to be adsorbed on the lattice oxygens of the catalyst, while $O_2$ adsorbs as ions on the oxygen vacancies formed by Sr substitution. The oxygen vacancy mechanism of the CO oxidation and the main defect of $Nd_{1-x}Sr_xCoO_{3-y}$ solid solution are supported and suggested from the agreement between IR data, conductivities, and kinetic data.

Thermoelectric properties of FeVSb1-xTex half-heusler alloys fabricated via mechanical alloying process

  • Hasan, Rahidul;Ur, Soon-Chul
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.582-588
    • /
    • 2019
  • FeVSb1-xTex (0.02 ≤ x ≤ 0.10) half-Heusler alloys were fabricated by mechanical alloying process and subsequent vacuum hot pressing. Near single half-Heusler phases are formed in vacuum hot pressed samples but a second phase of FeSb2 couldn't be avoided. After doping, the lattice thermal conductivity in the system was shown to decrease with increasing Te concentration and with increasing temperature. The lowest thermal conductivity was achieved for FeVSb0.94Te0.06 sample at about 657 K. This considerable reduction of thermal conductivities is attributed to the increased phonon scattering enhanced by defect structure, which is formed by doping of Te at Sb site. The phonon scattering might also increase at grain boundaries due to the formation of fine grain structure. The Seebeck coefficient increased considerably as well, consequently optimizing the thermoelectric figure of merit to a peak value of ~0.24 for FeVSb0.94Te0.06. Thermoelectric properties of various Te concentrations were investigated in the temperature range of around 300~973 K.

Stable Defect Structure of La2O3-Modified BaTiO3 (La$_2O_3$-변형 BaTi$O_3$의 안정한 결함구조)

  • Kim, Jeong Su;Park, Hyu Beom;An, Tae Ho;Kim, Si Jung
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.4
    • /
    • pp.309-318
    • /
    • 1994
  • The stable defect structure and the single phase region of La$_2O_3$-modified BaTi$O_3$ have been studied by X-ray diffractometer and scanning electron microscope. The stable defect structure of La$_2O_3$-modified BaTi$O_3$ has been identified as [($Ba^x_{Ba})_{1-2x}(La{\cdot}_{Ba})_{2x}][Ti^x_{Ti})_{1-x/2}(V""_{Ti})_{x/2}]O_3$ which consists of La$^{3+}$ ion substitution for Ba$^{3+}$ ion in the lattice structure and the formation of Ti vacancies for the charge compensation. When 3 mol% of La$_2O_3{\cdot}3/2TiO_3$ was added to BaTi$O_3$, the unit cell structure was transformed from tetragonal to cubic and the solubility limit was about 14 mol%. When La$_2O_3{\cdot}3/2TiO_2$ was added above this solubility limit, the second phase, La$_4Ba_2Ti_5O_{18}$, was formed. In the La$_2O_3$-modified BaTi$O_3$, it was found by the liquid phase sintering process that the sinterability was decreased by excess BaO but increased by excess Ti$O_2$.

  • PDF

Thermal Conductivity Measurement of Ge-SixGe1-x Core-Shell Nanowires Using Suspended Microdevices (뜬 마이크로 디바이스를 이용한 Ge-SixGe1-x Core-Shell Nanowires 의 열전도율 측정)

  • Park, Hyun Joon;Nah, Jung hyo;Tutuc, Emanuel;Seol, Jae Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.825-829
    • /
    • 2015
  • Theoretical calculations suggest that the thermoelectric figure of merit (ZT) can be improved by introducing a core-shell heterostructure to a semiconductor nanowire because of the reduced thermal conductivity of the nanowire. To experimentally verify the decrease in thermal conductivity in core-shell nanowires, the thermal conductivity of Ge-SixGe1-x core-shell nanowires grown by chemical vapor deposition (CVD) was measured using suspended microdevices. The silicon composition (Xsi) in the shells was measured to be about 0.65, and the remainder of the germanium in the shells was shown to play a role in decreasing defects originating from the lattice mismatch between the cores and shells. In addition to the standard four-point current- voltage (I-V) measurement, the measurement configuration based on the Wheatstone bridge was attempted to enhance the measurement sensitivity. The measured thermal conductivity values are in the range of 9-13 W/mK at room temperature and are lower by approximately 30 than that of a germanium nanowire with a comparable diameter.

Test on the Structural Performance of the TOX Deck plate - Evaluation of Structural Safety during Construction Stage - (무용접 압접 데크플레이트의 구조성능에 관한 실험 - 시공단계에서의 구조안전성 평가 -)

  • Oh, Sang Hoon;Kim, Young Ju;Yoon, Myung Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.701-709
    • /
    • 2008
  • Owing to the decreased work term and the convenience of construction work in Korea, the steel deck plate system has been widely used in the construction field. Most of all, due to its good stiffness and economic consideration, the steel-wire-integrated deck plate system (or truss deck plate system) has become very popular in recent years. But although it has many advantages, the truss deck plate system has a critical defect: it gets rusty in the welding joints between the lattice steel wire and the deck plate, resulting in the cracking of such welding joints and water leakage. To address these problems, a new type of truss deck plate system, which need not be welded and does not rust, was proposed herein: the TOX deck plate system. In this study, tests were conducted on 15 specimens to evaluate the structural safety of the proposed deck plate system during the construction stage. The test parameters were as follows: the depth of the slab the length of the span the diameters of the top, bottom, and lattice steel wire and the material properties of the zinc-coated steel sheets. The test results show that the TOX deck plate system can guarantee structural safety owing to its deflection and strength.

Formation of Passivation Layer and Its Effect on the Defect Generation during Trench Etching (트렌티 식각시 식각 방지막의 형성과 이들이 결함 생성에 미치는 영향)

  • Lee, Ju-Wook;Kim, Sang-Gi;Kim, Jong-Dae;Koo, Jin-Gon;Lee, Jeong-Yong;Nam, Kee-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.634-640
    • /
    • 1998
  • A well- shaped trench was investigated in view of the defect distribution along trench sidewall and bottom using high resolution transmission electron microscopy. The trench was formed by HBr plasma and additive gases in magnetically enhanced reactive ion etching system. Adding $0_2$ and other additive gases into HBr plasma makes it possible to eliminate sidewall undercut and lower surface roughness by forming the passivation layer of lateral etching, resulted in the well filled trench with oxide and polysilicon by subsequent deposition. The passivation layer of lateral etching was mainly composed of $SiO_xF_y$ $SiO_xBr_y$ confirmed by chemical analysis. It also affects the generation and distribution of lattice defects. Most of etch induced defects were found in the edge region of the trench bottom within the depth of 10$\AA$. They are generally decreased with the thickness of residue layer and almost disappeared below the uni¬formly thick residue layer. While the formation of crystalline defects in silicon substrate mainly depends on the incident angle and energy of etch species, the region of surface defects on the thickness of residue layer formed during trench etching.

  • PDF

A Study on the Characteristics of Natural, Synthetic, and Treated Gem Quality Diamonds by NMR and EPR (NMR과 EPR을 이용한 천연, 합성, 그리고 처리된 보석용 다이아몬드의 특성 연구)

  • Kim, Jong-Rang;Jang, Yun-Deuk;Kim, Sun-Ha;Kim, Jong-Hwa;Paik, Youn-Kee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.435-442
    • /
    • 2008
  • Natural, synthetic, and treated diamonds were studied by NMR and EPR. It was demonstrated that natural and synthetic diamonds, treated and non-treated diamonds, high pressure high temperature (HPHT) treated and electron beam treated diamonds could be distinguished among each other based on the $^{13}C$ NMR spectra acquired for relatively short periods of 100 minutes. The $^{13}C$ NMR linewidths of gem quality synthetic diamonds were broader than 1.6 ppm due to the paramagentic effects of transition metals, generally used as catalysts, while the linewidths of gem quality natural diamonds were narrower than 0.5 ppm regardless of the methods of treatment. The linewidth (0.5 ppm) for a HPHT treated, gem quality natural diamond was as broad as more than twice of the linewidth (0.2 ppm) of an electron beam treated diamond. The $^{13}C$ NMR signal intensities of treated, gem quality natural diamonds were as strong as more than 10 times of the intensities of non-treated, gem quality natural diamonds. When correlated with the concentrations of the paramagnetic defects (electrons) obtained from the EPR spectra, the relative $^{13}C$ NMR signal intensities increased in proportion to the concentrations of the paramagnetic electrons contained in each sample but the electron beam treated diamond was an exception. This suggested that the lattice component, in addition to the paramagnetic defect component, should also be considered in determining the $^{13}C$ NMR signal intensity of the electron beam treated diamond.

A study on point defect for thermal annealed CuGaSe2 single crystal thin film (열처리된 CuGaSe2 단결정 박막의 점결함연구)

  • 이상열;홍광준
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.154-154
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for CuGaSe2 single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe2, it was found tetragonal structure whose lattice constant at and co were 5.615 ${\AA}$ and 11.025 ${\AA}$, respectively. To obtain the single crystal thin films, CuGaSe2 mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (MWE) system. The source and substrate temperatures were Slot and 450$^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (UXD). The carrier density and mobility of CuGaSe2 single crystal thin films measured with Hall effect by van der Pauw method are 5.0l${\times}$10$\^$17/ cm$\^$-3/ and 245 $\textrm{cm}^2$/V$.$s at 293K, respectively. The temperature dependence of the energy band gap of the CuGaSe2 obtained from the absorption spectra was well described by the Varshni's relation, Eg(T) = 1.7998 eV - (8.7489${\times}$10$\^$-4/ eV/K)T$^2$/(T + 335 K. After the as-grown CuGaSe2 single crystal thin films was annealed in Cu-, Se-, and Ca-atmospheres, the origin of point defects of CuGaSe2 single crystal thin films has been investigated by the photoluminescence(PL) at 10 K The native defects of V$\_$CU/, V$\_$Se/, Cu$\_$int/, and Se$\_$int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted CuGaSe2 single crystal thin films to an optical n-type. Also, we confirmed that Ga in CuGaSe2/GaAs did not form the native defects because Ga in CuGaSe2 single crystal thin films existed in the form of stable bonds.

  • PDF

Study on Manufacture of Tantalum Powder from Tantalum Scrap using Hydride-Dehydride Process (HDH Process) (수소화-탈수소화법을 이용한 탄탈륨 스크랩으로부터 탄탈륨 분말 제조 연구)

  • Lee, Ji-eun;Lee, Chan Gi;Park, Ji Hwan;Yoon, Jin-Ho
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.30-37
    • /
    • 2018
  • For recylcing of high purity tantalum (Ta) scrap, We investigated manufacture of tantalum powder using hydride-dehydride (HDH) process. Tantalum had excellent properties such as ductile, hardness and high melting point. Usually these properties made difficult to make a powder. In this study, Tantalum powder was manufactured using Tantalum hydride via hydridation. Tantalum hydride was formed at $500^{\circ}C$, 5 hr/$700^{\circ}C$, 3 hr and it is easy to make a tantalum hydride powder because hydrogen in the tantalum act as a defect dislocation and lattice expansion. The powder was pulverized to a size of less than $10{\mu}m$ under a condition of 1300 rpm, 30 min using a ring mill, and tantalum powder with less than 50 ppm hydrogen was prepared through dehydridation in an Ar and low vacuum atmosphere.