• Title/Summary/Keyword: Lattice bar

Search Result 44, Processing Time 0.017 seconds

Stability of PS Opals in Supercritical Carbon Dioxide and Synthesis of Silica Inverse Opals

  • Yu, Hye-Min;Kim, Ah-Ram;Moon, Jun-Hyuk;Lim, Jong-Sung;Choi, Kyu-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2178-2182
    • /
    • 2011
  • Recently, the synthesis of ordered macroporous materials has received much attention due to its potential use as photonic band gap materials.$^1$ In this study, we have used the three-dimensional (3D) latex array template impregnated with benzenesulfonic acid (BSA), which is capable of catalyzing the reaction using tetraethyl orthosilicate (TEOS) as a precursor and distilled water. The polystyrene (PS) templates were reacted with TEOS in $scCO_2$ at 40 $^{\circ}C$ and at 80 bar. In the reactor, TEOS was filtrated into the PS particle lattice. After the reaction, porous silica materials were obtained by calcinations of the template. The stability test of the PS template in pure $CO_2$ was conducted before the main experiment. Scanning electron microscopy (SEM) images showed that the reaction in $scCO_2$ takes place only on the particle surface. This new method using $scCO_2$ has advantages over conventional sol-gel processes in its capability to control the fluid properties such as viscosity and interfacial tension. It has been found that the reaction in $scCO_2$ occurs only on the particle surface, making the proposed technique as more rapid and sustainable method of synthesizing inverse opal materials than conventional coating processes in the liquid phase and in the vapor phase.

Cathodic Properties of $LiCoO_2$ Synthesized by a Sol-Gel Method for Lithium Ion Battery

  • 조봉준;정의덕;심윤보
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.39-44
    • /
    • 1998
  • $LiCoO_2$ powder was synthesized in an aqueous solution by a sol-gel method and used as a cathode active material for a lithium ion rechargeable battery. The layered $LiCoO_2$ powders were prepared by igniting in air for 12 hrs at 600 ℃ $(600-LiCoO_2)$ and 850 ℃ $(850-LiCoO_2)$. The structure of the $LiCoO_2$ powder was assigned to the space group R bar 3 m (lattice parameters a=2.814 Å and c=14.04Å). The SEM pictures of $600-LiCoO_2$ revealed homogeneous and fine particles of about 1 μm in diameter. Cyclic voltammograms (CVs) of $600-LiCoO_2$ electrode displayed a set of redox peaks at 3.80/4.05 V due to the intercalation/deintercalation of the lithium ions into/out of the $LiCoO_2$ structure. CVs for the $850-LiCoO_2$ electrode had a major set of redox peaks at 3.88/4.13 V, and two small set of redox peaks at 4.18/4.42 V and 4.05/4.25 V due to phase transitions. The initial charge-discharge capacity was 156-132 mAh/g for the $600-LiCoO_2$ electrode and 158-131 mAh/g for the $850-LiCoO_2$ electrode at the current density of 0.2 mA/cm2. The cycleability of the cell consisting of the $600-LiCoO_2$ electrode was better than that of the $850-LiCoO_2$. The diffusion coefficient of the $Li^+$ ion in the $600-LiCoO_2$ electrode was calculated as $4.6{\times}10^{-8}\; cm^2/sec$.

Structural analysis of Precipitates in a Nickel based Cast Single Crystal of CMSX 6 (니켈계 초합금 CMSX 6 단결정 주조조직의 석출물구조 분석)

  • An, Seong-Uk;Larionov, V.;Grafas, I.;Kim, Su-Cheol;Im, Ok-Dong;Kim, Seung-Ho;Jin, Yeong-Hun;Choe, Jong-Su;Lee, Jae-Hun;Lee, Sang-Jun;Seo, Dong-Lee;Lee, Tae-Hun;Heo, Mu-Yeong
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1165-1169
    • /
    • 1998
  • A single crystal cast blade was manufactured by CMSX 6, one of the first generarion nickel based single crystal superalloys by the selector method in a vacuum furnace. The single crystal has been grown with cooling rate of 2.5 mm/min, after pouring the molten alloy of 163$0^{\circ}C$ to the mold heated to 150$0^{\circ}C$. The cast structure could be classified into matrix (dendrite) and eutectic regions in ${\gamma}$'shape and size. The eutectic region showed higher Ti content. As the additional results of ${\gamma}$'precipitates by EPMA and CBED analysis the ${\gamma}$'size was less than 0.5~0.7$\mu\textrm{m}$, showing the chemical composition close to Ni$_3$Al of Ll$_2$ lattice structure. But ${\gamma}$'size has increased to bigger than 1.0$\mu\textrm{m}$, being near to eutectic region, changing its shape to bar or huge block types. These showed the chemical structure near to Ni$_3$Ti of D $O_{24}$ lattice structure. Therefore, ${\gamma}$'morphology of dendrite and eutectic regions depends absolutely on its chemical composition and lattice structure.

  • PDF

Investigation on Formation Behaviors of Synthesized Natural Gas Hydrates (합성 천연가스의 하이드레이트 형성 거동 연구)

  • Lee, Jong-Won;Lee, Ju-Dong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.890-893
    • /
    • 2012
  • Gas hydrates are solid crystal structures formed by enclathration of gaseous guest species into 3-dimensional lattice structure of hydrogen-bonded water molecules. These compounds can be potentially used as an energy storage/transportation medium because they can hold a large amount of gas in a small volume of the solid phase. In addition, huge amount of natural gas, buried in seabeds or permafrost region in the form of the solid hydrate, is regarded as a future energy source. In this study, synthesized natural gas, whose composition is 90.0 mol% of methane, 7.0 mol% of ethane, and 3.0 mol% of propane, was used to identify formation behaviors of natural gas hydrates for the purpose of applying the gas hydrate to a storage/transportation medium of natural gas. According to the experimental results obtained by means of the solid-state NMR and high-resolution powder XRD methods, it is found that formed natural gas hydrates have crystal structure of the structure-II hydrate, and that methane occupies both small and large cages, while the others only occupy large ones. In addition, both the NMR spectroscopy and the gas chromatograph showed that there exists preferential occupation among the natural gas components during the hydrate formation. Compositional changes after the hydrate formation revealed that the preferential occupation is in order of propane, ethane, and methane (propane is the most preferential guest species when forming natural gas hydrates).