• Title/Summary/Keyword: Lattice Type Structure

Search Result 158, Processing Time 0.024 seconds

Structural and Optical Properties of CuInS2 Thin Films Fabricated by Electron-beam Evaporation

  • Jeong, Woon-Jo;Park, Gye-Choon;Chung, Hae-Duck
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.1
    • /
    • pp.7-10
    • /
    • 2003
  • Single phase CuInS$_2$ thin film with the strongest diffraction peak (112) at diffraction angle (2$\theta$) of 27.7$^{\circ}$ and the second strongest diffraction peak (220) at diffraction angle (2$\theta$) of 46.25$^{\circ}$was well made with chalcopyrite structure at substrate temperature of 70$^{\circ}C$. annealing temperature of 250$^{\circ}C$, annealing time of 60 min. The CuInS$_2$ thin film had the greatest grain size of 1.2 Um when the Cu/In composition ratio of 1.03, where the lattice constant of a and c were 5.60${\AA}$ and 11.12${\AA}$, respectively. The Cu/In stoichiometry of the single-phase CuInS$_2$thin films was from 0.84 to 1.3. The film was p-type when tile Cu/In ratio was above 0.99 and was n-type when the Cu/In was below 0.95. The fundamental absorption wavelength, absorption coefficient and optical band gap of p-type CuInS$_2$ thin film with Cu/In=1.3 were 837nm, 3.OH 104 cm-1 and 1.48 eV, respectively. The fundamental absorption wavelength absorption coefficient and optical energy band gap of n-type CuInS$_2$ thin film with Cu/In=0.84 were 821 nm, 6.0${\times}$10$^4$cm$\^$-1/ and 1.51 eV, respectively.

Structural and optical properties of $CuInS_2$ thin films fabricated by electron-beam evaporation (전자빔 층착으로 제조한 $CuInS_2$ 박막의 구조적 및 광학적 특성)

  • 박계춘;정운조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.193-196
    • /
    • 2001
  • Single phase CuInS$_2$ thin film with the highest diffraction peak (112) at diffraction angle (2$\theta$) of 27.7$^{\circ}$ and the second highest diffraction peak (220) at diffraction angle (2$\theta$) of 46.25$^{\circ}$ was well made with chalcopyrite structure at substrate temperature of 70 $^{\circ}C$, annealing temperature of 25$0^{\circ}C$, annealing time of 60 min. The CuInS$_2$ thin film had the greatest grain size of 1.2 ${\mu}{\textrm}{m}$ and Cu/In composition ratio of 1.03. Lattice constant of a and c of that CuInS$_2$ thin film was 5.60 $\AA$ and 11.12 $\AA$ respectively. Single phase CuInS$_2$ thin films were accepted from Cu/In composition ratio of 0.84 to 1.3. P-type CuInS$_2$ thin films were appeared at over Cu/In composition ratio of 0.99. Under Cu/In composition ratio of 0.96, conduction types of CuInS$_2$ thin films were n-type. Also, fundamental absorption wavelength, the absorption coefficient and optical energy band gap of p-type CuInS$_2$ thin film with Cu/In composition ratio of 1.3 was 837 nm, 3.0x10 $^4$ $cm^{-1}$ / and 1.48 eV respectively. When CuAn composition ratio was 0.84, fundamental absorption wavelength, the absorption coefficient and optical energy band gap of n-type CuInS$_2$ thin film was 821 nm, 6.0x10$^4$ $cm^{-1}$ / and 1.51 eV respectively.

  • PDF

Electric surface field effect on the formation of nanoporous pipe structure in Al anodization process (알루미늄 양극산화 공정에서의 나노다공성 파이프 구조 형성에 대한 표면 전기장 효과)

  • Lee, Jung-Tack;Choi, Jae-Ho;Kim, Keun-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.427-428
    • /
    • 2009
  • The authors investigated anomalous nanoporous structures of aluminum oxides during the Al anodization process. We implemented two-steps anodizing process for the electrolyte of oxalic acid. As increasing DC voltages, lattice constants are proportionally increased. For the curved surface, the surface electric field was distorted so that the nanoporous pipe channel changed to a cone-type shape. We confirmed the periodicity by using the FFT(Fast Fourier Transform) analysis.

  • PDF

SUPPRESSION OF THE TETRAGONAL DISTORTION IN THIN Pb(Zr, Ti)$O_3$/MgO(100)

  • Kang, H.C.;Noh, D.Y.;Je, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.141-153
    • /
    • 1997
  • The paraelectric cubic-to-ferroelectric tetragonal phase transition of the thin Pb(Zr, Ti)$O_3$ (PZT) films grown on MgO(001) substrate was investigated in a series of synchrotron x-ray scattering experiments. As the thickness of the film decreases the transition temperature and the amount of the tetragonal distortion were decreased continuously Different from only the c-domains were existent in the thinnest 25nm thick film. Based on this we propose a model for the domain structure of the tetragonal PZT/MgO(100) film that is very different from the ones suggested in literature. We attribute the suppression of the transition to the substrate field that prefers the c-type domains near the interface and suppresses the tetragonal distortion to minimize the film-substrate lattice mismatch.

  • PDF

The Hall Effect in Binary Compound Silver Telluride Single Crystal (2원화합물 Ag2Te 단결정의 Hall 효과 특성)

  • Choi, Chang-Ju;Kang, Won-Chan;Min, Wan-Ki;Kim, Nam-Oh
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.171-174
    • /
    • 2004
  • The $Ag_2Te$ crystal was grown by the Bridgman method. The $Ag_2Te$ crystal was an monoclinic structure with lattice constance a = $8.1686{\AA}$, b = $9.0425{\AA}$, c = $8.0065{\AA}$. Hall effect shows a n-type conductivity in the $Ag_2Te$ crystal. The electrical resistivity was 1.080e-$3{\Omega}cm$ and electron mobility was $-5.48{\times}10^3cm^2/V{\cdot}sec$ at room temperature(RT).

The Growth and Energy Gap Measurement of $ZnGa_2S_4 and Zn$a_2S_4$: Co Crystals ($ZnGa_2S_4 및 Zn$a_2S_4$ : Co 결정의 합성과 Energy Gap 측정)

  • Kim, Hyung-Gon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1814-1818
    • /
    • 1989
  • The crystals of ZnGa2S4 and ZnGa2S4:Co(2mole%) were synthesized from high-purity (99.999%) elements of Zinc, Gallium, and sulfur. The crystal structure of these crystals belong to a tetragonal system with layer type and the lattice constants are a =5.35\ulcorner c=10.43\ulcornerfor ZnGa2S4: Co(2 mole%) crystal at 298\ulcorner. The optical absorption spectra of these compounds were obtained through reflectance measurements using a 60 mm diameter intergrating sphere. The optical energy gaps are 3.18eV for ZnGa2S4 and 2.60eVfor ZnGa2S4:L Co(2mole%)at 298\ulcorner, respectively.

  • PDF

Electrical Properties and Structures of Spinel Type LiMn$_{2-y}$M$_y$O$_4$(M=Cr$^{3+}$) Doped with Transition Metal (전이금속으로 치환된 Spinel형 LiMn$_{2-y}$M$_y$O$_4$(M=Cr$^{3+}$)의 구조 및 전기적 성질)

  • 형경우;김중헌;권태윤
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.930-936
    • /
    • 1999
  • For LiMn2O4 based spinel structures the stoichiometric reaction conditions need be considered carefully because the electrical properties depend on the structural stability. In order to obtain the homogeneous compound the Pechini process was chosen which could obtain a stoichiometry phase even low temperature and dependency of the synthetic condition on structural stability and electrochemical performance was investigated. X-ray diffraction studies showed that the compounds doped with transition metal have smaller lattice constants than those un doped. The dc conductivity was evaluated by a four probe method in the low and high temperature region respectively. The variations of basal spacings for the cathode were detected to be dependent on the extent of current flows (under dc)

  • PDF

Synthesis and Electrical Properties of Barium Uranium Sulfides

  • Sato, Nobuaki;Nakajima, Takeshi;Yamada, Kohta;Fujino, Takeo
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.348-352
    • /
    • 1999
  • Barium uranium sulfides, $BaUS_3$ and $BaU_2B_5$, were synthesized in a single phase by the reactin of $(Ba, UO_2)(NO_3)_2$ at Ba/U=1 and 0.5 with carbon disulfide at 1273 K for 6 h. They crystallized in orthorhombic structure with space group, Pnma. The lattice parameters a, b and c are 7.493, 10.38 and 7.238$\AA$ for $BaUS_3$ and 7.525, 8.475 and 11.858$\AA$ for $BaU_2S_5$, respectively. The electrical conductivity of these compunds increased with increasing temperature above 200K, below which however, it was nearly temperature independent. The Hall coefficient suggested that they are n-type semiconductors.

  • PDF

The Hall Effect in Binary Compound Silver telluride Single Crystal (2원화화물 $Ag_2Te$ 단결정의 Hall 효과 특성)

  • Kim, N.O.;Kim, H.G.;Jang, S.N.;Lee, K.S.;Bang, T.W.;Hyun, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.134-136
    • /
    • 2004
  • The results of investigations of $Ag_2Te$ crystal is presented. $Ag_2Te$ crystal was grown by the Bridgman method. The $Ag_2Te$ crystal was an monoclinic structure with lattice constance a = 8.1686 A, b = 9.0425 ${{\AA}}$, c = 8.0065 ${{\AA}}$. Hall effect shows a n-type conductivity in the $Ag_2Te$ crystal. The electrical resistivity values was $1.080e^{-3}{\Omega}cm$ and electron mobility was $-5.48{\times}10^3cm^2/V{\cdot}sec$ at room temperature(RT).

  • PDF

The Electrical Properties of Ag2Se Single Crystal (Ag2Se 단결정의 전기적 특성)

  • Kim, Nam-oh;Min, Wan-Ki;Kim, Hyung-gon;Oh, Gum-kon;Hyun, Seung-cheol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.1
    • /
    • pp.28-31
    • /
    • 2004
  • The results of investigations of Ag2Se single crystal are presented. $Ag_2Se$ crystal was grown by the Bridgman method. The $Ag_2Se$ single crystal was an orthorhombic structure with lattice constance $a=4.333{\AA}$, $b=7.062{\AA}$, $c=7.764{\AA}$. Hall effect shows a n-type conductivity in the $Ag_2Se$ single crystal. The electrical resistivity was $1.25{\times}10^3ohm^{-1}^cm{-1}$ and electron mobility was $-5.48{\times}10^3cm^2/V{\cdot}sec$ at room temperature(RT).