• 제목/요약/키워드: Lattice Boom Crane

검색결과 4건 처리시간 0.015초

해양플랜트용 라티스 붐 크레인의 최적 설계에 관한 연구 (A Study on the optimal design of lattice boom crane for offshore plant)

  • 김현지;김지혜;박상혁;최시연;허선철
    • 한국산업융합학회 논문집
    • /
    • 제22권6호
    • /
    • pp.757-765
    • /
    • 2019
  • In manufacturing An offshore plant is a structure that produces resources buried in the seabed. It can be classified into fixed, floating, and hybrid methods depending on the installation method. In particular, the Lattice boom type crane is typically used because it is used for a long time in the sea and moves to other seas, which is less affected by wind. In this study, the crane was designed by using three-step optimization design in the early stage of the design of Lattice boom crane for offshore plant. Finite element analysis was performed to verify the safety factor, deflection, buckling coefficient and fatigue life of the designed crane and the results were verified.

해양플랜트용 격자 붐 크레인의 안전성 평가 (The Stability Analysis of Offshore Lattice Boom Crane)

  • 김지혜;정용길;허선철
    • 동력기계공학회지
    • /
    • 제22권1호
    • /
    • pp.25-33
    • /
    • 2018
  • The safety of structure was evaluated by taking into consideration the complex marine environmental conditions of the Lattice boom crane, which is widely used in offshore plants due to less influence by wind. CFX analysis was carried out to take into account the influence of wind speed, and the result was applied as a boundary condition to perform static analysis according to the luffing angles of $28^{\circ}$, $61^{\circ}$, and $80^{\circ}$ in the on board and off board, respectively. In addition, the Lattice Boom Crane is large slender structure, and the possibility of buckling is interpreted under three conditions where the biggest stress occurs. All conditions satisfied the safety requirements of the Classification Regulations. Also, as a result of the buckling analysis, the load less than the critical load was applied so buckling does not occur.

크롤러 크레인의 붐 길이 선회각도에 의한 롤러 하중 해석 (Analysis of Roller Load by Boom Length and Rotation Angle of a Crawler Crane)

  • 이득기;강정호;김태현;오철규;김종민;김종명
    • 한국기계가공학회지
    • /
    • 제20권3호
    • /
    • pp.83-91
    • /
    • 2021
  • A crawler crane, which consists of a lattice boom, a driving system, and a movable vehicle, is widely used on construction sites. The crawler crane often traverses rough terrain at these sites; as a result, an overload limiter needs to be installed on the crane to prevent it from overturning and breaking. In this paper, we studied the distributed load change in relation to boom length and the angle of rotation of the roller that comes in direct contact with the grounded track shoe. First, we developed a 3D model of a crawler crane and meshed it for finite elements. Then, we performed finite element analysis to derive the load on the roller. Finally, we graphed and examined the roller distributed load data of the case according to boom length and rotation angle. By detecting the load on the roller of the crawler crane, we can predict the potential for the crane to overturn before it happens.

크롤러 크레인에서 붐의 처짐을 고려한 러핑와이어 장력과 전도모멘트 사이의 관계식 보정 (Compensation of Relation Formula between Luffing Wire Tension and Overturning Moment in a Crawler Crane Considering the Deflection of Boom)

  • 장효필;한동섭
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.44-49
    • /
    • 2011
  • The crawler crane, which consists of a lattice boom, a driving system, and movable vehicle, is widely used in a construction site. It needs to be installed an overload limiter to prevent the overturning accident and the fracture of structure. This research is undertaken to provide the relation formula for designing the overload limiter as follows: First the relation formulas between the wire-rope tension and the hoisting load or the overturning ratio according to the luffing angle and length of a lattice boom are established. Secondly the derived formulas are corrected by using the compensated angle considering the deflection of boom through the finite element analysis. The stiffness analysis is carried out for 30-kinds of models as a combination of 6-kinds of luffing angle and 5-kinds of length of boom. Finally the shape design of a stick type load cell, which is the device to measure the wire-rope tension, is performed. 5-kinds of notch radius and 5-kinds of center hole radius are adopted as the design parameter for the strength analysis of the load cell.