• Title/Summary/Keyword: Latitude

Search Result 1,051, Processing Time 0.165 seconds

The Real-Time Determination of Ionospheric Delay Scale Factor for Low Earth Orbiting Satellites by using NeQuick G Model (NeQuick G 모델을 이용한 저궤도위성 전리층 지연의 실시간 변환 계수 결정)

  • Kim, Mingyu;Myung, Jaewook;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.271-278
    • /
    • 2018
  • For ionospheric correction of low earth orbiter (LEO) satellites using single frequency global navigation satellite system (GNSS) receiver, ionospheric scale factor should be applied to the ground-based ionosphere model. The ionospheric scale factor can be calculated by using a NeQuick model, which provides a three-dimensional ionospheric distribution. In this study, the ionospheric scale factor is calculated by using NeQuick G model during 2015, and it is compared with the scale factor computed from the combination of LEO satellite measurements and international GNSS service (IGS) global ionosphere map (GIM). The accuracy of the ionospheric delay calculated by the NeQuick G model and IGS GIM with NeQuick G scale factor is analyzed. In addition, ionospheric delay errors calculated by the NeQuick G model and IGS GIM with the NeQuick G scale factor are compared. The ionospheric delay error variations along to latitude and solar activity are also analyzed. The mean ionospheric scale factor from the NeQuick G model is 0.269 in 2015. The ionospheric delay error of IGS GIM with NeQuick G scale factor is 23.7% less than that of NeQuick G model.

Development of RGBW Dimming Control Sensitivity Lighting System based on the Intelligence Algorithm (지능형 알고리즘 기반 RGBW Dimming control LED 감성조명 시스템 개발)

  • Oh, Sung-Kwun;Lim, Sung-Joon;Ma, Chang-Min;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.359-364
    • /
    • 2011
  • The study uses department of the sensitivity and fuzzy reasoning, one of artificial intelligence algorithms, so that develop LED lighting system based on fuzzy reasoning for systematical control of the LED color temperature. In the area of sensitivity engineering, by considering the relation between color and emotion expressed as an adjective word, the corresponding sensitivity word can be determined, By taking into consideration the relation between the brain wave measured from the human brain and the color temperature, the preferred lesson subject can be determined. From the decision of the sensitivity word and the lesson subject, we adjust the color temperature of RGB (Red, Green, Blue) LED. In addition, by using the information of the latitude and the longitude from GPS(Global Positioning System), we can calculate the on-line moving altitude of sun. By using the sensor information of both temperature and humidity, we can calculate the discomfort index. By considering the altitude of sun as well as the value of the discomfort index, the illumination of W(white) LED and the color temperature of RGB LED can be determined. The (LED) sensitivity lighting control system is bulit up by considering the sensitivity word, the lesson subject, the altitude of sun, and the discomfort index The developed sensitivity lighting control system leads to more suitable atmosphere and also the enhancement of the efficiency of lesson subjects as well as business affairs.

Selection of Korean Native Plants as Outdoor Pot Plants (실외 화분용 자생식물 선발)

  • Sohn, Kwanhwa;Kim, Hoon Sik
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.2
    • /
    • pp.98-109
    • /
    • 2010
  • 78 Korean native plants, which have not been used in general, were selected to be used as outdoor pot plants for three seasons, from spring to autumn. Plants, which were explored in about 30 places of Korea from 2007 to 2009, were transplanted to or sown in white plastic general pots ($27.5cm({\Phi}){\times}27.5cm(H)$) and hanging pots($28cm({\Phi}){\times}13cm(H)$) and grown in the garden of 36''56' latitude(N) and 127''09' longitude(E). 38 species(13 families and 29 genus) were suitable for outdoor general pots, and 46 species(28 families and 43 genus) for outdoor hanging pots. Among 38 plants for outdoor general pots, the principal species, which were easy to grow and have not been used in general, were 16 species, Metaplexis japonica in Asclepiadaceae, Phyteuma japonicum in Campanulaceae, Artemisia capillaris, Artemisia princeps, and Artemisia selengensis in Compositae, Carex humilis in Cyperaceae, Pennisetum alopecuroides, and Setaria viridis in Gramineae, Agastache rugosa, Glechoma hederacea, Elsholtzia splendens, Isodon inflexus, and Mosla punctulata in Labiatae, Vicia villosa in Leguminosae, Piper kadzura in Piperaceae, and Rosa multiflora var. multiflora in Rosaceae. Among 46 plants for outdoor hanging pots, the principal species, which were easy to grow and have not been used in general, were 17 species, Metaplexis japonica in Asclepiadaceae, Ixeris stonlonifera in Compositae, Calystegia japonica and Quamoclit angulata in Convolvulaceae, Dioscorea batatas in Dioscoreaceae, Glechoma hederacea and Thymus quinquecostatus in Labiatae, Trifolium lupinaster for. alpinus and Vicia villosa in Leguminosae, Menispermum dauricum in Menispermaceae, Piper kadzura in Piperaceae, Clematis mandshurica for. lancifolia in Ranunculoideae, Rosa multiflora var. multiflora and Potentilla fragarioides var. major in Rosaceae, Paederia scandens and Rubia akane in Rubiaceae, and Parthenocissus tricuspidata in Vitaceae.

Ionosphere Modeling and Estimation Using Regional GPS Data (지역적인 GPS 관측 데이터를 이용한 이온층 모델링 및 추정)

  • 황유라;박관동;박필호;임형철;조정호
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.277-284
    • /
    • 2003
  • We present a GPS-derived regional ionosphere model, which estimates Total Electron Content (TEC) in a rectangular grid on the spherical shell over Korea. After dividing longitude and latitude over Korea with 1$^{\circ}$$\times$1$^{\circ}$ spatial resolution, the TEC at the vertex of the grid was estimated by the Kalman filter. The GPS data received from nine nationwide GPS stations, operated by Korea Astronomy Observatory (KAO), were used for this study. To reduce inherent noises, the pseudorange data were phase-leveled by a linear combination of pseudoranges and carrier phases. The solar-geomagnetic reference frame, which is less variable to the ionosphere movement due to the Sun and the geomagnetic field than an Earth-fixed frame, was used. During a quiet time of solar activity, the KAO's regional ionosphere map indicated 30-45 Total Electron Content Unit at the peak of the diurnal variation. In comparison with the Global ionosphere Map of the Center for Orbit Determination in Europe, RMS differences were at the level of 4-5 TECU for five days.

Analysis of KOMPSAT-5 Orbit for Radargrammetry (레이더 측량기법 적용을 위한 다목적실용위성 5호 궤도 분석)

  • Lee, Hoon-Yol;Jang, So-Young
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.351-358
    • /
    • 2008
  • KOMPSAT-5 will be launched in 2010 carrying a SAR (Synthetic Aperture Radar) system to obtain high resolution images of the earth surface regardless of weather or solar condition. In this paper, the orbits of KOMPSAT-5 and the imaging modes of SAR were analyzed for radargrammetry, and the best image pairs were suggested. We set the pass number from the nearest orbit to a given ground point and selected image pairs for radargrarnmetry, with height sensitivity of parallax higher than 0.5 to achieve enough height resolution and with the value lower than 0.8 to avoid errors from geometric distortion. On the equator, for example, where the distance between two adjacent passes is fixed to 95 km, we solved the orbit geometry and found that the image pairs with the pass numbers of 3-2 and 5-3 are suitable for radargrarnmetry. As the examples with arbitrary latitude, we selected Daejeon and Sejong Antarctic stations and calculated the orbital elements by using STK software. Three image pairs (5-4, 7-5 and 8-5) were found suitable for radargrammetry at Daejeon while 10 pairs (8-6, 9-7, 10-7, 11-8, 12-8, 13-9, 14-9, 15-9, 15-10 and 15-11) at Sejong Antarctic station.

Comparison between TOMS and OMI-derived Tropospheric Ozone (TOMS와 OMI 자료를 이용하여 산출된 대류권 오존 비교 분석)

  • Na, Sun-Mi;Kim, Jae-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.235-242
    • /
    • 2006
  • This study compared between tropospheric column ozone by applying the SAM method to TOMS and OMI data for northern summer. Tropospheric ozone from the SAM represents a peak over the tropical Atlantic, where it is related with biomass burning. This feature is also seen in the distribution of the model and CO. Additionally, enhancement of the SAM ozone over the Middle East, and South and North America agrees well with the model and CO distribution. However, the SAM results show more ozone than the model results over the northern hemisphere, especially the ocean (e.g. the North Pacific and the North Atlantic). The tropospheric ozone distribution from OMI data shows more ozone than that from TOMS data. This can be caused by different viewing angle, sampling frequency, and a-priori ozone profiles between OMI and TOMS. The correlation between the SAM tropospheric ozone and CO is better than that between the model and CO in the tropics. However, that correlation is reversed in the mid-latitude.

Global Patterns of Pigment Concentration, Cloud Cover, and Sun Glint: Application to the OSMI Data Collection Planning (색소농도, 운량 및 태양반사의 전구분포 : OSMI 자료수집계획에 대한 응용)

  • Yongseung Kim;Chiho Kang;Hyo-Suk Lim
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.277-284
    • /
    • 1998
  • To establish a monthly data collection planning for the Ocean Scanning Multispectral Imager (OSMI), we have examined the global patterns of three impacting factors: pigment concentration, cloud cover, and sun glint. Other than satellite mission constraints (e.g., duty cycle), these three factors are considered critical for the OSMI data collection. The Nimbus-7 Coastal Zone Color Scanner (CZCS) monthly mean products and the International Satellite Cloud Climatology Project (ISCCP) monthly mean products (C2) were used for the analysis of pigment concentration and cloud cover distributions, respectively. And the monthly-simulated patterns of sun glint were produced by performing the OSMI orbit prediction and the calculation of sun glint radiances at the top-of-atmosphere (TOA). Using monthly statistics (mean and/or standard deviation) of each factor in the above for a given 10$^{\circ}$ latitude by 10$^{\circ}$ longitude grid, we generated the priority map for each month. The priority maps of three factors for each month were subsequently superimposed to visualize the impact of three factors in all. The initial results illustrated that a large part of oceans in the summer hemisphere was classified into the low priority regions because of seasonal changes of clouds and sun illumination. Sensitivity tests for different sets of classifications were performed and demonstrated the seasonal effects of clouds and sun glint to be robust.

Research on the Spatio-temporal Distribution Pattern of Temperature Using GIS in Korea Peninsular (GIS를 이용한 한반도 기온의 시·공간적 분포패턴에 관한 연구)

  • KIM, Nam-Shin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.85-94
    • /
    • 2008
  • This study is to construe spatio-temporal characteristics of temperature in cities and changes of climatical regions in analyzing a change of Korea Peninsular climate. We used daily mean air temperature data which was collected in South and North Korea for the past 34 years from 1974 to 2007. We created temperature map of 500m resolution using Inverse Distance Weight in application with adiabatic lapse rate per month in linear relation with height and temperature. In the urbanization area, the data analyzed population in comparison with temperature changes by the year. An annual rising rate of temperature was calculated $0.0056^{\circ}C$, and the temperature was increased $2.14^{\circ}C$ from 1974 to 2107. The south climate region in Korea by the Warmth index was expanded to the middle climate region by the latitude after 1990s. A rise of urban area in mean temperature was $0.5-1.2^{\circ}C$, Seoul, metropolitan and cities which were high density of urbanization and industrialization with the population increase between 1980s and 1990s. In case of North Korea, Cities were Pyeongyang, Anju, Gaecheon, Hesan. A rise in cities areas in mean temperature has influence on vegetation, especially secondary growth such as winter buds of pine trees appears built-up area and outskirts in late Autumn. Finally, nowaday we confront diverse natural events over climatical changes, We need a long-term research to survey and analyze an index on the climatical changes to present a systematic approach and solution in the future.

Assessment of the Effects of Interactions between Climatic Conditions and Genetic Characteristics on the Agronomic Traits of Soybeans Grown in Six Different Experimental Fields

  • Park, Myoung Ryoul;Cai, Chunmei;Seo, Min-Jung;Yun, Hong-Tae;Park, Soo-Kwon;Choi, Man-Soo;Park, Chang-Hwan;Moon, Jung Kyung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.3
    • /
    • pp.246-268
    • /
    • 2019
  • Soybean [Glycine max (L.) Merr.] is a species of legume native to East Asia. The interactions between climatic conditions and genetic characteristics are known to affect the agricultural performance of soybean. Therefore, the present investigation was conducted to identify the main elements affecting the agricultural performances of 11 soybean varieties/lines from China [Harbin ($45^{\circ}12^{\prime}N$), Yanji ($42^{\circ}53^{\prime}N$), Dalian ($39^{\circ}30^{\prime}N$), Qingdao ($36^{\circ}26^{\prime}N$)] and the Republic of Korea [Suwon ($37^{\circ}16^{\prime}N$), and Jeonju ($35^{\circ}49^{\prime}N$)]. The days to flowering (DTF) of soybeans with the e1-nf and e1-as alleles and the E1e2e3e4 genotype, except in 'Keumgangkong', 'Tawonkong', and 'Duyoukong', were relatively short compared to those of soybeans with other alleles. Although DTF of the soybeans was highly correlated with all climatic conditions [negative: precipitation, average temperature (AVT), accumulated temperature; positive: day-length (DL)], days to maturity and 100-seed weight of the soybeans showed no significant correlation with any climatic conditions. The soybeans with a dominant Dt1 allele, except 'Tawonkong', had the longest stem length (STL). Moreover, STL of the soybeans grown in the test fields showed a positive correlation with only DL; however, the results of our chamber test that was conducted to complement the field tests showed that STL of soybean was positively affected by AVT and DL. Although soybean yield (YLD) showed positive correlations with latitude and DL (except L62-667, OT89-5, and OT89-6), the response of YLD to the climatic conditions was cultivar-specific. Our results show that DTF and STL of soybeans grown in six different latitudes are highly affected by DL, and AVT and genetic characteristic also affect DTF and STL.

A Study on Accuracy of Position Fixes Obtained by GPS at Three Fixed Stations (정점(定點)에 있어서 GSP의 측위정도(測位精度))

  • Cho, Eul-Je
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.3 no.2
    • /
    • pp.19-28
    • /
    • 1991
  • The United States has been developing a GPS(Global Positoning System), and now we can make use of it everywhere in the world. The author measured the usable time and took position fixes from three fixed stations in Japan in order to evaluate the positioning accuracy of GPS, firstly by the difference in the time of the year and, secondly by the difference in location between the stations in 1988. I was able to receive positioning signals from only 6 or 7 satellites, but in July 1991, 14 GPS satellites became available. The results obtained are summerized as follows: 1) The usable time was 7~9 hours from only 6~7 satellites. 2) In the case of the former, the time zone of position fixes varied with the time of the year and there were a little differences of the accuracy of position fixes except 3H(three dimensiomal high level positioning). In the case of the latter, there were not obvious locality differences in 3D(three dimensional positioning). But the positioning errors and number of data varied on each level in 2D(two dimensiomal positioning), although the positioning errors were smaller than 0.1 nautical mile. 3) Th standard deviations of Dep(departure) were larger than tat of D.lat(difference of latitude), and varied widely to the east and west. But the standard deviations were smaller than 100 meters.

  • PDF