Browse > Article
http://dx.doi.org/10.7740/kjcs.2019.64.3.246

Assessment of the Effects of Interactions between Climatic Conditions and Genetic Characteristics on the Agronomic Traits of Soybeans Grown in Six Different Experimental Fields  

Park, Myoung Ryoul (Central Area Crop Breeding Research Div., National Institute of Crop Science)
Cai, Chunmei (College of Life Sciences, Qingdao Agricultural University)
Seo, Min-Jung (Central Area Crop Breeding Research Div., National Institute of Crop Science)
Yun, Hong-Tae (Central Area Crop Breeding Research Div., National Institute of Crop Science)
Park, Soo-Kwon (Research Policy Div., Research Policy Bureau, Rural Development Administration)
Choi, Man-Soo (Crop Foundation Div., National Institute of Crop Science)
Park, Chang-Hwan (Crop Post-harvest Technology Research Div., National Institute of Crop Science)
Moon, Jung Kyung (National Institute of Agricultural Science)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.64, no.3, 2019 , pp. 246-268 More about this Journal
Abstract
Soybean [Glycine max (L.) Merr.] is a species of legume native to East Asia. The interactions between climatic conditions and genetic characteristics are known to affect the agricultural performance of soybean. Therefore, the present investigation was conducted to identify the main elements affecting the agricultural performances of 11 soybean varieties/lines from China [Harbin ($45^{\circ}12^{\prime}N$), Yanji ($42^{\circ}53^{\prime}N$), Dalian ($39^{\circ}30^{\prime}N$), Qingdao ($36^{\circ}26^{\prime}N$)] and the Republic of Korea [Suwon ($37^{\circ}16^{\prime}N$), and Jeonju ($35^{\circ}49^{\prime}N$)]. The days to flowering (DTF) of soybeans with the e1-nf and e1-as alleles and the E1e2e3e4 genotype, except in 'Keumgangkong', 'Tawonkong', and 'Duyoukong', were relatively short compared to those of soybeans with other alleles. Although DTF of the soybeans was highly correlated with all climatic conditions [negative: precipitation, average temperature (AVT), accumulated temperature; positive: day-length (DL)], days to maturity and 100-seed weight of the soybeans showed no significant correlation with any climatic conditions. The soybeans with a dominant Dt1 allele, except 'Tawonkong', had the longest stem length (STL). Moreover, STL of the soybeans grown in the test fields showed a positive correlation with only DL; however, the results of our chamber test that was conducted to complement the field tests showed that STL of soybean was positively affected by AVT and DL. Although soybean yield (YLD) showed positive correlations with latitude and DL (except L62-667, OT89-5, and OT89-6), the response of YLD to the climatic conditions was cultivar-specific. Our results show that DTF and STL of soybeans grown in six different latitudes are highly affected by DL, and AVT and genetic characteristic also affect DTF and STL.
Keywords
agronomic trait; climatic condition; correlation; genetic characteristic; soybean;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hadley, P., E. H. Roberts, R. J. Summerfield, and F. R. Minchin. 1984. Effects of temperature and photoperiod on flowering in Soya bean [Glycine max (L.) Merrill]: a quantitative model. Ann. Bot. 53 : 669-681.   DOI
2 Hartwig, E. E. 1973. Varietal development. in: Soybeans: Improvement, Production and Uses, Caldwell, B.E. Ed., Madison, WI, pp. 187-207.
3 Heatherly, L. G. and J. R. Smith. 2004. Effect of soybean stem growth habit on height and node number after beginning bloom in the midsouthern USA. Crop Sci. 44 : 1855-1858.   DOI
4 Hipparagi, Y., R. Singh, D. R. Choudhury, and V. Gupta. 2017. Genetic diversity and population structure analysis of Kala bhat (Glycine max (L.) Merrill) genotypes using SSR markers. Hereditas. 154 : 9.   DOI
5 Hofstrand, D. 2011. Climate Change Beginning to Impact Global Crop Production. AgMRC Renewable Energy & Climate Change Newsletter. Available online: https://www.agmrc.org/renewable-energy/climate-change-and-agriculture/climate-change-beginning-to-impact-global-crop-production (accessed on September 2011).
6 Hollinger, S. E. and S. A. Changnon. 1993. Response of corn and soybean yields to precipitation augmentation, and implications for weather modification. in: Illinois Bulletin 73, Illinois State Water Survey, Illinois.
7 Hu, Z., D. Zhang, G. Zhang, G. Kan, D. Hong, and D. Yu. 2014. Association mapping of yield-related traits and SSR markers in wild soybean (Glycine soja Sieb. and Zucc.). Breed Sci. 63 : 441-449.   DOI
8 Kantolic, A. G. and G. A. Slafer. 2007. Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Ann. Bot. 99 : 925-933.   DOI
9 Korte, L. L., J. H. Williams, J. E. Specht, and R. C. Sorensen. 1983. Irrigation of Soybean Genotypes During Reproductive Ontogeny. I: Yield Component Responses. Crop Sci. 23 : 528-533.   DOI
10 Kumar, A., V. Pandey, A. M. Shekh, and M. Kumar. 2008. Growth and yield response of soybean (Glycine max L.) in relation to temperature, photoperiod and sunshine duration at Anand, Gujarat, India. Am. Eurasian J. Agron. 1 : 45-50.
11 Lee, S. H., M. A. Bailey, M. A. R. Mian, T. E. Carter, D. A. Ashley, R. S. Hussey, W. A. Parrott, and H. R. Boerma. 1996. Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Sci. 36 : 728-735.   DOI
12 Liu, X., J. A. Wu, H. Ren, Y. Qi, C. Li, J. Cao, X. Zhang, Z. Zhang, Z. Cai, and J. Gai. 2017. Genetic variation of world soybean maturity date and geographic distribution of maturity groups. Breed Sci. 67 : 221-232.   DOI
13 Mason, A. S. 2015. SSR genotyping. Methods Mol. Biol. 1245 : 77-89.   DOI
14 McBlain, B. A. and R. L. Bernard. 1987. A new gene affecting the time of flowering and maturity in soybeans. J. Hered. 78 : 160-162.   DOI
15 Meckel, L., D. B. Egli, R. E. Phillips, D. Radcliffe, and J. E. Leggett. 1984. Effect of moisture stress on seed growth in soybean. Agron. J. 76 : 647-650.   DOI
16 Pandey, P. K., W. A. T. Herrera, and J. W. Pendleton. 1984. Drought responses of grain legumes under irrigation gradient: U. Plant water status and canopy temperature. Agron. J. 76 : 553-557.   DOI
17 Park, M. R., M. J. Seo, Y. Y. Lee, and C. H. Park. 2016. Selection of Useful Germplasm Based on the Variation Analysis of Growth and Seed Quality of Soybean Germplasms Grown at Two Different Latitudes. Plant Breed Biotech. 4 : 462-474.   DOI
18 Penariol, A. 2000. Soja: Cultivares no lugar certo. Informacoes Agronomicas. 90 : 13.
19 Rodrigues, J., F. Miranda, N. Piovesan, A. Ferreira, M. Ferreira, C. Cruz, E. Barros, and M. Alves. 2016. QTL mapping for yield components and agronomic traits in a Brazilian soybean population. Crop Breed Appl. Biotechnol. 16 : 265-273.   DOI
20 Rudelsheim, P. L. J. and G. Smets. 2014. Baseline information on agricultural practices in the EU Soybean (Glycine max (L.) Merr.). Available online: http://www.europabio.org/baseline-information-agricultural-practices-eu-soybean-glycine-max-l-merr (accessed on 8 May 2014).
21 Rural Development Administration (RDA). 2012. Agricultural Science Technology Standards for Investigation of Research (Korean).
22 Saito, M. and K. Hashimoto. 1980. Classification, distribution and cultivation characterizations of varieties. in: Soybean ecology and cultivation technology, Saito, M. and T. Okubo. Eds., Rural Culture Association Japan, Tokyo, Japan, pp. 37-62.
23 Saryoko, A., K. Homma, I. Lubis, and T. Shiraiwa. 2017. Plant development and yield components under a tropical environment in soybean cultivars with temperate and tropical origins. Plant Prod. Sci. 20 : 375-383.   DOI
24 Sato, K. 1976. The growth responses of soybean plant to photoperiod and temperature. I. Response in vegetative growth. Proc. Crop Sci. Soc. Japan 45 : 443-449.   DOI
25 Sebastian, S. A., L. G. Streit, P. A. Stephens, J. A. Thompson, B. R. Hedges, M. A. Fabrizius, J. F. Soper, D. H. Schmidt, R. L. Kallem, M. A. Hinds, L. Feng, and J. A. Hoeck. 2010. Context-specific marker-assisted selection for improved grain yield in elite soybean populations. Crop Sci. 50 : 1196-1206.   DOI
26 Specht, J. E., K. Chase, M. Macrander, G. L. Graef, J. Chung, J. P. Markwell, M. Germann, J. H. Orf, and K. G. Lark. 2001. Soybean response to water: A QTL analysis of drought tolerance. Crop Sci. 41 : 493-509.   DOI
27 Van Schaik, P. H. and A. H. Probst. 1958. Effects of some environmental factors on flower production and reproductive efficiency in soybeans. Agron. J. 50 : 192-197.   DOI
28 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24 : 1596-1599.   DOI
29 Thompson, J. A., R. L. Bernard, and R. L. Nelson. 1997. A third allele at the soybean dt1 locus. Crop Sci. 37 : 757-762.   DOI
30 Thompson, L. M. 1969. Weather and technology in the production of corn in the U.S. Corn Belt. Agron. J. 61 : 453-456.   DOI
31 Watanabe, S., K. Harada, and J. Abe. 2012. Genetic and molecular bases of photoperiod responses of flowering in soybean. Breed Sci. 61 : 531-543.   DOI
32 Watanabe, S., R. Hideshima, Z. Xia, Y. Tsubokura, S. Sato, Y. Nakamoto, N. Yamanaka, R. Takahashi, M. Ishimoto, T. Anai, S. Tabata, and K. Harada. 2009. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182 : 1251-1262.   DOI
33 Zhang, G. W., S. C. Xu, W. H. Mao, Q. Z. Hu, and Y. M. Gong. 2013. Determination of the genetic diversity of vegetable soybean [Glycine max (L.) Merr.] using EST-SSR markers. J. Zhejiang Univ. Sci. B. 14 : 279-288.
34 Woodworth, C. M. 1932. Genetics and breeding in the improvement of the soybean. Illinois Agr. Exp. Sta. Bull. 384 : 297-404.
35 Xia, Z. J., S. Watanabe, T. Yamada, S. Tsubokura, H. Nakashima, H. Zhai, T. Anai, S. Sato, T. Yamazaki, S. Lu, H. Wu, S. Tabata, and K. Harada. 2012. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1, which regulates photoperiodic flowering. Proc. Natl. Acad. Sci. USA 109 : E2155-2164.   DOI
36 Xu, M., Z. Xu, B. Liu, F. Kong, Y. Tsubokura, S. Watanabe, Z. Xia, K. Harada, A. Kanazawa, T. Yamada, and J. Abe. 2013. Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol. 13 : 91.   DOI
37 Yamada, T., M. Hajika, N. Yamada, K. Hirata, A. Okabe, N. Oki, K. Takahashi, K. Seki, K. Okano, Y. Fujita, A. Kaga, T. Shimizu, T. Sayama, and M. Ishimoto. 2012. Effects on flowering and seed yield of dominant alleles at maturity loci E2 and E3 in a Japanese cultivar, Enrei. Breed Sci. 61 : 653-660.   DOI
38 Zhai, H., S. Lu, Y. Wang, X. Chen, H. Ren, J. Yang, W. Cheng, C. Zong, H. Gu, H. Qiu, H. Wu, X. Zhang, T. Cui, and Z. Xia. 2014. Allelic variations at four major maturity E genes and transcriptional abundance of the E1 gene are associated with flowering time and maturity of soybean cultivars. PLoS One 9 : e97636.   DOI
39 Zhang, X., W. Wang, N. Guo, Y. Zhang, Y. Bu, J. Zhao, and H. Xing. 2018. Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height. BMC Genomics 19 : 226.   DOI
40 Zhang, W. K., Y. J. Wang, G. Z. Luo, J. S. Zhang, C. Y. He, X. L. Wu, J. Y. Gai, and S. Y. Chen. 2004. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor. Appl. Genet. 108 : 1131-1139.   DOI
41 Hofstrand, D. 2011. Climate Change Beginning to Impact Global Crop Production. AgMRC Renewable Energy & Climate Change Newsletter. Available online: https://www.agmrc.org/renewable-energy/climate-change-and-agriculture/climate-change-beginning-to-impact-global-crop-production (accessed on September 2011).
42 Avila, A. M. H., J. R. B. Farias, H. S. Pinto, and F. G. Pilau. 2013. Climatic restrictions for maximizing soybean yields. in: Board, J. E. (Ed.), A comprehensive survey of international soybean research-genetics, physiology, agronomy and nitrogen relationships. New York, NY, pp. 367-375.
43 Berlato, M. A. 1981. Bioclimatologia da soja. in: Miyasaka, S. and J. C. Medina. (Eds.), A soja no Brasil. Campinas: ITAL, Campinas, Brasil, pp. 175-184.
44 Bernard, R. L. 1971. Two major genes for time of flowering and maturity in soybeans. Crop Sci. 11 : 242-244.   DOI
45 Bernard, R. L. 1972. Two genes affecting stem termination in soybeans. Crop Sci. 12, 235-239.   DOI
46 Bisen, A., D. Khare, P. Nair, and N. Tripathi, 2015. SSR analysis of 38 genotypes of soybean (Glycine Max (L.) Merr.) genetic diversity in India. Physiol. Mol. Biol. Plants 21 : 109-115.   DOI
47 Bonato, E. R. and N. A. Vello. 1999. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet. Mol. Biol. 22 : 229-232.   DOI
48 Buzzell, R. I. 1971. Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can. J. Gene Cytol. 13 : 703-707.   DOI
49 Buzzell, R. I. and H. D. Voldeng. 1980. Inheritance of insensitivity to long daylength. Soybean Genet. Newsl. 7 : 26-29.
50 Chen, G. H. and P. Wiatrak. 2010. Soybean development and yield are influenced by planting date and environmental conditions in the southeastern coastal plain, United States. Agron. J. 102 : 1731-1737.   DOI
51 Cober, E. R., S. J. Molnar, M. Charette, and H. D. Voldeng. 2010. A new locus for early maturity in soybean. Crop Sci. 50 : 524-527.   DOI
52 Cober, E. R. and H. D. Voldeng. 2001. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci. 41 : 698-701.   DOI
53 Cox, W. J. and G. D. Jolliff. 1986. Growth and yield of sunflower and soybean under soil water deficits. Agron. J. 78 : 226-230.   DOI
54 Downs, J. R. and J. F. Thomas. 1990. Morphology and reproductive development of soybean under artificial conditions. Biotronics. 19 : 19-32.
55 Fageria, N. K. 1989. Solos tropicais e aspectos fisiológicos das culturas. Brasilia: Embrapa-DPU, Brasilia, Brasil.
56 Frederick, J. R., C. R. Camp, and P. J. Bauer. 2001. Droughtstress effects on branch and mainstem seed yield and yield components of determinate soybean. Crop Sci. 41 : 759-763.   DOI
57 Fukui, J. and M. Arai. 1951. Ecological studies on Japanese soy-bean varieties. I. Classification of soy-bean varieties on the basis of the days from germination to blooming and from blooming to ripening with special reference to their geographical differentiation. Japan J. Breed. 1 : 27-39.   DOI
58 Gai, J. Y., Y. S. Wang, M. C. Zhang, J. A. Wang, and R. Z. Chang. 2001. Studies on the classification of maturity groups of soybeans in China. Acta Agron. Sin. 27 : 286-292.   DOI
59 Garner, W.W. and H.A. Allard. 1930. Photoperiodic response of soybeans in relation to temperature and other environmental factors. J. Agric. Res. 41 : 719-735.