• Title/Summary/Keyword: Latin square

Search Result 429, Processing Time 0.04 seconds

Sugarcane bagasse as exclusive roughage for dairy cows in smallholder livestock system

  • de Almeida, Gleidiana Amelia Pontes;Ferreira, Marcelo de Andrade;Silva, Janaina de Lima;Chagas, Juana Catarina Cariri;Veras, Antonia Sherlanea Chaves;de Barros, Leonardo Jose Assis;de Almeida, Gledson Luiz Pontes
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.379-385
    • /
    • 2018
  • Objective: The study aimed to evaluate sugarcane bagasse as roughage in lactating cow on feed intake, digestibility, ingestive behavior, milk production and composition, and microbial protein synthesis. Methods: Ten Girolando cows at initial body weight of $450{\pm}25.6kg$ and at $143.7{\pm}30.7days$ in milk were assigned in two $5{\times}5$ Latin square designs. Five 21-day experimental periods were adopted ($1^{\circ}$ to 14-day: diets adaptation period; $15^{\circ}$ to 21-day: data collection and sampling period). The diets consisted of four different levels of sugarcane bagasse (45%, 50%, 55%, and 60%) and a control diet, commonly adopted in the region, based on spineless cactus (25% sugarcane bagasse), formulated to meet 12 kg/d milk yield. Results: The dry matter (DM), organic matter (OM), and total digestible nutrients intakes and DM and OM digestibilities observed for 45% and 50% bagasse inclusion were similar to control diet, while that 55% and 60% bagasse inclusion were lower. Cows fed control diet, and bagasse diets of 45%, and 50% levels had the nutritional requirements attended, that guaranteed 12 kg/d of milk yield. The crude protein intake and digestibility of cows fed 45%, 50%, and 55% of bagasse inclusion were similar to control diet. The neutral detergent fiber (NDF) intake and digestibility differ for all bagasse diets related to control diet, while the non-fiber carbohydrates intake and digestibility for cows fed 45% of bagasse were similar for control diet. The intakes and digestibilities of nutrients decreased linearly in function of bagasse inclusion; NDF and indigestible NDF intakes did not vary. The ruminating time, feeding and rumination efficiency, microbial protein synthesis and milk yield decreased linearly with sugarcane bagasse inclusion. Conclusion: Sugarcane bagasse decreases milk production; however, its inclusion level in between 45% to 50% associated to concentrate could replace diets based on spineless cactus for crossbred dairy cow's producing 12 kg/d of milk.

Effects of different levels of crude protein and protease on nitrogen utilization, nutrient digestibility, and growth performance in growing pigs

  • Kim, Yong Ju;Kim, Tae Heon;Song, Min Ho;An, Ji Seon;Yun, Won;Lee, Ji Hwan;Oh, Han Jin;Lee, Jun Soeng;Kim, Gok Mi;Kim, Hyeun Bum;Cho, Jin Ho
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.659-667
    • /
    • 2020
  • This study was conducted to evaluate the effects of different levels of crude protein (CP) and protease on nitrogen (N) utilization, nutrient digestibility, and growth performance in growing pigs. A total of six crossbred ([Landrace × Yorkshire] × Duroc) barrows were individually accepted in 1.2 m × 0.7 m × 0.96 m stainless steel metabolism cages. The pigs (average initial body weight of 27.91 ± 1.84 kg) randomly assigned to six diets with six weeks (6 × 6 Latin square design). The experiment was carried out in an environment with a temperature of 23 ± 1.5℃, a relative humidity of 83 ± 2.3% and a wind speed of 0.25 ± 0.03 m/s. The dietary treatments were arranged in a 2 × 3 factorial design with two levels of CP (15.3% or 17.1%) and three levels of protease (0 ppm, 150 ppm, or 300 ppm). The average daily gain and gain to feed ratio (G:F) tended to increase (p = 0.074) with increasing amounts of protease. The low CP level diet reduced (p < 0.050) urinary and fecal N concentrations, the total N excretion in feces, and increased (p < 0.050) N retention. Different protease levels in the diet did not affect (p > 0.05) at N intake, but supplementation of the diets with 300 ppm protease decreased (p < 0.050) the N concentration in urine and feces and tended to increase (p = 0.061) the percentage of N retention retained of the total N intake. The dietary CP level did not affect (p > 0.050) the apparent total tract digestibility (ATTD) of dry matter, digestible energy (DE), and metabolic energy (ME), but diet supplementation with 300 ppm protease showed higher (p < 0.050) ATTD of DE and ME than in the protease-free diet. Therefore, a low protein diet with protease could improve the utilization of nitrogen, thereby reducing the negative effect of N excretion into the environment while maintaining or increasing growth performance compared to a high protein diet.

Effects of Applying Microbial Additive Inoculants to Spent Mushroom Substrate (Flammulina velutipes) on Rumen Fermentation and Total-tract Nutrient Digestibility in Hanwoo Steers (팽이버섯 부산물 발효에 따른 한우 거세우 반추위 성상 및 소화율에 미치는 영향)

  • Baek, Youl-Chang;Jeong, Jin-Young;Oh, Young-Kyoon;Kim, Min-Seok;Lee, Sung-Dae;Lee, Hyun-Jeong;Do, Yoon-Jung;Ahmadi, Farhad;Choi, Hyuck
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.3
    • /
    • pp.569-586
    • /
    • 2017
  • We inoculated a spent mushroom substrate from Flammulina velutipes (SMSF) with a microbial additive and assessed the effects on chemical composition, ruminal fermentation parameters, and total-tract nutrient digestibility. In Exp. 1, three cannulated Hanwoo steers were used in an in situ trial to determine the degradation kinetics of dry matter (DM) and crude protein (CP). In Exp. 2, three Hanwoo steers were randomly assigned to experimental diets according to a $3{\times}3$ Latin square for a 3-week period (2 weeks for adaptation and 1 week for sample collection). Experimental diets included the control diet (3.75 kg/d formulated concentrate mixture + 1.25 kg/d rice straw), SMSF diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d SMSF), and inoculated SMSF (ISMSF) diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d ISMSF). The chemical composition of ISMSF did not differ from that of SMSF. Microbial additive inoculation decreased pH (P<0.05) and improved preservation for SMSF. The percentages of DM, neutral detergent fiber (NDF), and acid detergent fiber (ADF) in ISMSF were slightly lesser than those in SMSF. Ruminal fermentation characteristics and total-tract nutrient digestibility were not affected by diet. Overall, microbial additive inoculation improved preservation for SMSF and may allow improved digestion in the rumen; however, the total digestible nutrients (TDN) of SMSF and ISMSF diets were slightly lesser than the control diet. The ISMSF can be used as an alternative feedstuff to partially replace formulated concentrate feed.

The Hyper Connection of The Heredity Gene(RNA) and The Goendang with Jong Nang/Tomb Gate (괸당, 정낭(錠木), 묘(墓)의 신문(神門)과 유전자(RNA)의 접목)

  • Kim, Jeong Su;Lee, Moon Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.3 no.4
    • /
    • pp.1-19
    • /
    • 2017
  • Death culture continues to lead human history with complementarity in the sense that it is half of life culture. The three sacred gates and the two tombs are connected to the olegil space. In this space, the principle of complementarity in which coexistence exist between life and death is hidden in Jeju culture. It is a question and wait. Contrarily, the opposite is complementary. (Contraria Sunt Complementa Latin) This refers to the relationship of each other in relation to one another and in a mutually dependent relationship. The Jong Nang is used as basic logic in DNA codon of human body as well as communication principle. In addition, there is a pattern of similarity of the linkage between the square oval ear of the grave, the Korean Taegeukguk and 卦, the genome (DNA) 卦. The Jong Nang 'Batdam' and 'Sandam' are conneted like 'black dragon ten thousand', and stone walls are connected to each other as the stone network, which is called as the 'Goendam' (and conventionally is told as the 'Goendang') and is related to the Family networks. The relationship between the Tomb of the ancestors and their offspring is believed to be "Soul Synchronizing the Ancestor to Offspring" and becomes "Change in Future", and Genetic factors in the physical blood are transmitted directly to the children. The DNA RNA was represented by the determinant.

Intake, digestibility, and rumen and metabolic characteristics of cattle fed low-quality tropical forage and supplemented with nitrogen and different levels of starch

  • Franco, Marcia de Oliveira;Detmann, Edenio;Filho, Sebastiao de Campos Valadares;Batista, Erick Darlisson;Rufino, Luana Marta de Almeida;Barbosa, Marcilia Medrado;Lopes, Alexandre Ribeiro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.797-803
    • /
    • 2017
  • Objective: Effects of nitrogen supplementation associated with different levels of starch on voluntary intake, digestibility, and rumen and metabolic characteristics of cattle fed low-quality tropical forage (Brachiaria decumbens hay, 7.4% crude protein, CP) were evaluated using ruminal and abomasal cannulated steers. Methods: Five European${\times}$Zebu young bulls (186 kg body weight, BW) were distributed according to a $5{\times}5$ Latin square. The following treatments were evaluated: control, supplementation with 300 g CP/d (0:1), supplementation with 300 g starch/d and 300 g CP/d (1:1), supplementation with 600 g starch/d and 300 g CP/d (2:1), and supplementation with 900 g starch/d and 300 g CP/d (3:1). A mixture of nitrogenous compounds provided 1/3 from true protein (casein) and 2/3 from non-protein nitrogen (mixture of urea and ammonium sulphate, 9:1) was used as the nitrogen supplement. In order to supply energy a unique source of corn starch was used. Results: Supplements increased (p<0.05) dry matter intake, but did not affect (p>0.05) forage intake. There was a cubic effect (p<0.05) of starch on voluntary intake. This was attributed to the highest forage intake (g/kg BW) when using the 2:1 starch:CP ratio. Supplements increased (p<0.05) organic matter (OM) digestibility, but did not affect (p>0.05) neutral detergent fibre corrected for ash and protein (NDFap) digestibility. There was a positive linear effect (p<0.05) of the amount of starch supplemented on OM digestibility. Total NDFap digestibility was not affected (p>0.05) by the amount of supplemental starch. Ruminal ammonia nitrogen concentrations were higher (p<0.05) in supplemented animals, however, a negative linear effect (p<0.05) of amount of starch was observed. Supplements increased (p<0.05) the nitrogen balance (NB) and efficiency of nitrogen utilization. These effects were attributed to increased body anabolism, supported by higher (p<0.05) serum concentration of insulin-like growth factor 1. Increasing the amount of starch tended (p<0.06) to linearly increase the NB. In spite of this, there was a highest NB value for the 2:1 starch:CP ratio amongst the treatments with supplementation. Conclusion: Nitrogen supplementation in cattle fed low-quality tropical forage increases nitrogen retention in the animal's body. An additional supply of starch increases nitrogen retention by increasing energy availability for both rumen and animal metabolism.

Effect of dietary net energy concentrations on growth performance and net energy intake of growing gilts

  • Lee, Gang Il;Kim, Jong Hyuk;Han, Gi Ppeum;Koo, Do Yoon;Choi, Hyeon Seok;Kil, Dong Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.9
    • /
    • pp.1314-1322
    • /
    • 2017
  • Objective: This experiment investigated the effect of dietary net energy (NE) concentrations on growth performance and NE intake of growing gilts. Methods: Five diets were formulated to contain 9.6, 10.1, 10.6, 11.1, and 11.6 MJ NE/kg, respectively. A metabolism trial with 10 growing pigs (average body weight [BW] = $15.9{\pm}0.24kg$) was conducted to determine NE concentrations of 5 diets based on French and Dutch NE systems in a $5{\times}5$ replicated Latin square design. A growth trial also was performed with five dietary treatments and 12 replicates per treatment using 60 growing gilts (average BW = $15.9{\pm}0.55kg$) for 28 days. A regression analysis was performed to predict daily NE intake from the BW of growing gilts. Results: Increasing NE concentrations of diets did not influence average daily gain and average daily feed intake of growing gilts. There was a quadratic relationship (p = 0.01) between dietary NE concentrations and feed efficiency (G:F), although the difference in G:F among treatment means was relatively small. Regression analysis revealed that daily NE intake was linearly associated with the BW of growing gilts. The prediction equations for NE intake with the BW of growing gilts were: NE intake (MJ/d) = $1.442+(0.562{\times}BW,kg)$, $R^2=0.796$ when French NE system was used, whereas NE intake (MJ/d) = $1.533+(0.614{\times}BW,kg)$, $R^2=0.810$ when Dutch NE system was used. Conclusion: Increasing NE concentrations of diets from 9.6 to 11.6 MJ NE/kg have little impacts on growth performance of growing gilts. Daily NE intake can be predicted from the BW between 15 and 40 kg in growing gilts.

Substitution of Wheat for Corn in Beef Cattle Diets: Digestibility, Digestive Enzyme Activities, Serum Metabolite Contents and Ruminal Fermentation

  • Liu, Y.F.;Zhao, H.B.;Liu, X.M.;You, W.;Cheng, H.J.;Wan, F.C.;Liu, G.F.;Tan, X.W.;Song, E.L.;Zhang, X.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1424-1431
    • /
    • 2016
  • The objective of this study was to evaluate the effect of diets containing different amounts of wheat, as a partial or whole substitute for corn, on digestibility, digestive enzyme activities, serum metabolite contents and ruminal fermentation in beef cattle. Four Limousin${\times}$LuXi crossbred cattle with a body weight ($400{\pm}10kg$), fitted with permanent ruminal, proximal duodenal and terminal ileal cannulas, were used in a $4{\times}4$ Latin square design with four treatments: Control (100% corn), 33% wheat (33% substitution for corn), 67% wheat (67% substitution for corn), and 100% wheat (100% substitution for corn) on a dry matter basis. The results showed that replacing corn with increasing amounts of wheat increased the apparent digestibility values of dry matter, organic matter, and crude protein (p<0.05). While the apparent digestibility of acid detergent fiber and neutral detergent fiber were lower with increasing amounts of wheat. Digestive enzyme activities of lipase, protease and amylase in the duodenum were higher with increasing wheat amounts (p<0.05), and showed similar results to those for the enzymes in the ileum except for amylase. Increased substitution of wheat for corn increased the serum alanine aminotransferase concentration (p<0.05). Ruminal pH was not different between those given only corn and those given 33% wheat. Increasing the substitution of wheat for corn increased the molar proportion of acetate and tended to increase the acetate-to-propionate ratio. Cattle fed 100% wheat tended to have the lowest ruminal $NH_3-N$ concentration compared with control (p<0.05), whereas no differences were observed among the cattle fed 33% and 67% wheat. These findings indicate that wheat can be effectively used to replace corn in moderate amounts to meet the energy and fiber requirements of beef cattle.

Effect of Grape Pomace Powder, Mangosteen Peel Powder and Monensin on Nutrient Digestibility, Rumen Fermentation, Nitrogen Balance and Microbial Protein Synthesis in Dairy Steers

  • Foiklang, S.;Wanapat, M.;Norrapoke, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1416-1423
    • /
    • 2016
  • This study was designed to investigate the effect of grape pomace powder (GPP), mangosteen peel powder (MPP) and monensin on feed intake, nutrients digestibility, microorganisms, rumen fermentation characteristic, microbial protein synthesis and nitrogen balance in dairy steers. Four, rumen fistulated dairy steers with initial body weight (BW) of $220{\pm}15kg$ were randomly assigned according to a $4{\times}4$ Latin square design to receive four treatments. The treatments were as follows: T1 = control, T2 = supplementation with monensin at 33 mg/kg diet, T3 = supplementation with GPP at 2% of dry matter intake, and T4 = supplementation with MPP at 30 g/kg diet. The steers were offered the concentrate diet at 0.2% BW and 3% urea treated rice straw (UTRS) was fed ad libitum. It was found that GPP supplemented group had higher UTRS intake and nutrient digestibility in terms of neutral detergent fiber and acid detergent fiber than those in control group (p<0.05). Ammonia nitrogen ($NH_3-N$) and blood urea-nitrogen concentration were higher in monensin, GPP and MPP supplemented groups (p<0.05). Total volatile fatty acids and propionate in the GPP group were higher than those in the control group (p<0.05) while acetate concentration, and acetate to propionate ratio were decreased (p<0.01) when steers were supplemented with GPP, monensin, and MPP, respectively. Moreover, protozoal populations in GPP, MPP, and monensin supplementation were significantly lower than those in the control group (p<0.05), while cellulolytic bacterial population was significantly higher in the control group (p<0.05). Nitrogen retention, microbial crude protein and efficiency of microbial nitrogen synthesis were found significantly higher in steers that received GPP (p<0.05). Based on this study it could be concluded that the GPP has potential as an alternative feed supplement in concentrate diets which can result in improved rumen fermentation efficiency, digestibility and microbial protein synthesis in steers fed on treated rice straw.

Nutritional Performance of Cattle Grazing during Rainy Season with Nitrogen and Starch Supplementation

  • Lazzarini, Isis;Detmann, Edenio;Filho, Sebastiao de Campos Valadares;Paulino, Mario Fonseca;Batista, Erick Darlisson;Rufino, Luana Marta de Almeida;Reis, William Lima Santiago dos;Franco, Marcia de Oliveira
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1120-1128
    • /
    • 2016
  • The objective of this work was to evaluate the effects of supplementation with nitrogen and starch on the nutritional performance of grazing cattle during the rainy season. Five rumen cannulated Nellore steers, averaging 211 kg of body weight (BW), were used. Animals grazed on five signal grass paddocks. Five treatments were evaluated: control (forage only), ruminal supplementation with nitrogen at 1 g of crude protein (CP)/kg BW, ruminal supplementation with starch at 2.5 g/kg BW, supplementation with nitrogen (1 g CP/kg BW) and starch (2.5 g/kg BW), and supplementation with nitrogen (1 g CP/kg BW) and a mixture of corn starch and nitrogenous compounds (2.5 g/kg BW), thereby resulting in an energy part of the supplement with 150 g CP/kg of dry matter (DM). This last treatment was considered an additional treatment. The experiment was carried out according to a $5{\times}5$ Latin square design following a $2{\times}2+1$ factorial arrangement (with or without nitrogen, with or without starch, and the additional treatment). Nitrogen supplementation did not affect (p>0.10) forage intake. Starch supplementation increased (p<0.10) total intake but did not affect (p<0.10) forage intake. There was an interaction between nitrogen and starch (p<0.10) for organic matter digestibility. Organic matter digestibility was increased only by supplying starch and nitrogen together. Nitrogen balance (NB) was increased (p<0.10) by the nitrogen supplementation as well as by starch supplementation. Despite this, even though a significant interaction was not observed (p>0.10), NB obtained with nitrogen plus starch supplementation was greater than NB obtained with either nitrogen or starch exclusive supplementation. Supplementation with starch and nitrogen to beef cattle grazing during the rainy season can possibly improve digestion and nitrogen retention in the animal.

Effects of Condensed Tannins in Mao (Antidesma thwaitesianum Muell. Arg.) Seed Meal on Rumen Fermentation Characteristics and Nitrogen Utilization in Goats

  • Gunun, P.;Wanapat, M.;Gunun, N.;Cherdthong, A.;Sirilaophaisan, S.;Kaewwongsa, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1111-1119
    • /
    • 2016
  • Mao seed is a by-product of the wine and juice industry, which could be used in animal nutrition. The current study was designed to determine the effect of supplementation of mao (Antidesma thwaitesianum Muell. Arg.) seed meal (MOSM) containing condensed tannins (CT) on rumen fermentation, nitrogen (N) utilization and microbial protein synthesis in goats. Four crossbred (Thai Native${\times}$Anglo Nubian) goats with initial body weight (BW) $20{\pm}2kg$ were randomly assigned to a $4{\times}4$ Latin square design. The four dietary treatments were MOSM supplementation at 0%, 0.8%, 1.6%, and 2.4% of total dry matter (DM) intake, respectively. During the experimental periods, all goats were fed a diet containing roughage to concentrate ratio of 60:40 at 3.0% BW/d and pangola grass hay was used as a roughage source. Results showed that supplementation with MOSM did not affect feed intake, nutrient intakes and apparent nutrient digestibility (p>0.05). In addition, ruminal pH and ammonia nitrogen ($NH_3$-N) were not influenced by MOSM supplementation, whilst blood urea nitrogen was decreased quadraticly (p<0.05) in goats supplemented with MOSM at 2.4% of total DM intake. Propionate was increased linearly with MOSM supplementation, whereas acetate and butyrate were remained the same. Moreover, estimated ruminal methane ($CH_4$) was decreased linearly (p<0.05) when goats were fed with MOSM at 1.6% and 2.4% of total DM intake. Numbers of bacteria and protozoa were similar among treatments (p>0.05). There were linear decreases in urinary N (p<0.01) and total N excretion (p<0.01) by MOSM supplementation. Furthermore, N retention was increased linearly (p<0.05) when goats were fed with MOSM supplementation at 1.6% and 2.4% of total DM intake. Microbial protein synthesis were not significantly different among treatments (p>0.05). From the current study, it can be concluded that supplementation of MOSM at 1.6% to 2.4% of total DM intake can be used to modify ruminal fermentation, especially propionate and N utilization in goats, without affecting the nutrient digestibility, microbial populations and microbial protein synthesis.