• Title/Summary/Keyword: Latin Hypercube sampling

Search Result 151, Processing Time 0.015 seconds

Development of Evaluation Model for ITS Project using the Probabilistic Risk Analysis (확률적 위험도분석을 이용한 ITS사업의 경제성평가모형)

  • Lee, Yong-Taeck;Nam, Doo-Hee;Lim, Kang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.95-108
    • /
    • 2005
  • The purpose of this study is to develop the ITS evaluation model using the Probabilistic Risk Analysis (PRA) methodology and to demonstrate the goodness-of-fit of the large ITS projects through the comparative analysis between DEA and PRA model. The results of this study are summarized below. First, the evaluation mode] using PRA with Monte-Carlo Simulation(MCS) and Latin-Hypercube Sampling(LHS) is developed and applied to one of ITS projects initiated by local government. The risk factors are categorized with cost, benefit and social-economic factors. Then, PDF(Probability Density Function) parameters of these factors are estimated. The log-normal distribution, beta distribution and triangular distribution are well fitted with the market and delivered price. The triangular and uniform distributions are valid in benefit data from the simulation analysis based on the several deployment scenarios. Second, the decision making rules for the risk analysis of projects for cost and economic feasibility study are suggested. The developed PRA model is applied for the Daejeon metropolitan ITS model deployment project to validate the model. The results of cost analysis shows that Deterministic Project Cost(DPC), Deterministic Total Project Cost(DTPC) is the biased percentile values of CDF produced by PRA model and this project need Contingency Budget(CB) because these values are turned out to be less than Target Value(TV;85% value), Also, this project has high risk of DTPC and DPC because the coefficient of variation(C.V) of DTPC and DPC are 4 and 15 which are less than that of DTPC(19-28) and DPC(22-107) in construction and transportation projects. The results of economic analysis shows that total system and subsystem of this project is in type II, which means the project is economically feasible with high risk. Third, the goodness-of-fit of PRA model is verified by comparing the differences of the results between PRA and DEA model. The difference of evaluation indices is up to 68% in maximum. Because of this, the deployment priority of ITS subsystems are changed in each mode1. In results. ITS evaluation model using PRA considering the project risk with the probability distribution is superior to DEA. It makes proper decision making and the risk factors estimated by PRA model can be controlled by risk management program suggested in this paper. Further research not only to build the database of deployment data but also to develop the methodologies estimating the ITS effects with PRA model is needed to broaden the usage of PRA model for the evaluation of ITS projects.