• Title/Summary/Keyword: Lateral settlement

Search Result 161, Processing Time 0.019 seconds

Case Study for Lateral Displacement of Caisson installed on Deep Soft Soils (대심도 연약지반상에 건설되는 케이슨의 측방변형 사례 연구)

  • Kim, Myung-Hak;Yoon, Min-Seung;Lee, Sang-Wook;Lee, Chea-Kyun;Han, Byoung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.940-950
    • /
    • 2010
  • In case of uneven surcharge like backfill or embankment after constructing caisson applied on the deep soft marine deposits, lateral deformation of soft soils would happen due to plastic deformation of soil particles by increase of excess pore water pressure. Lateral deformation of soil will result in the caisson displacement which affects soft soil-caisson structure safety. Soft soil was improved by soil compaction pile method, and then gravity caisson was installed. Soil deformations were monitored and analyzed with step by step backfill and embankment behind the caisson. Amount and speed of lateral deformation after the installation of caissons were closely related with the time of backfill and embankment. The relationship between maximum lateral displacement($\Delta_y$) in front of caisson and settlement($\Delta_s$) can be expressed as $\Delta_y=(0.0871)\Delta_s+122.95$. Soft soil depth did not affect the lateral displacement of caisson in this study, which can be explained the soft soil improvement under the caisson by S.C.P. method. Substantially the amount and speed of the lateral deformation of caisson were closely related with the uneven surcharging rate behind caisson.

  • PDF

A Case Analysis on the Displacement of Soft Fundation -Kwangyang Industrial Highway- (연약지반의 변위에 대한 사례연구-광양산업도로)

  • 박병기;정진섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.03a
    • /
    • pp.43-58
    • /
    • 1994
  • In this reaserch, the comparison between numerical results and field measurments including settlement, heaving and lateral displacement, in the interchange construction works on soft ground. Sand drain was performed for the improvement of the site and steel pipe piles driven for the pier foundation of interchange. The steel pipe piles were replaced to the equivalent steel sheet pile wall. Biot's equation was coupled with elasto-viscoplastic model for the multi-purpose program of soft foundation. Finally countemeasures for future possible lateral displacement and settlement were exmanined.

  • PDF

Calculation of Immediate Settlement Caused by Shear Deformation for Embankment on Soft Ground (연약지반 성토시 전단변형에 의하여 유발된 즉시침하량의 산정)

  • 정하익;진현식;진규남;김달용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.78-83
    • /
    • 1999
  • The ultimate settlement of soft clay consists of three parts: $\circled1$ immediate settlement, S$\sub$d/; $\circled2$ Primary consolidation settlement, S$\sub$c/; $\circled3$ Secondary consolidation settlement, S$\sub$s/. In general, S$\sub$c/ can be accurately calculated by one-dimensional consolidation and S$\sub$s/ or S$\sub$d/ may be ignored. This paper focuses on a calculation method to estimate the immediate settlement induced by lateral deformation of subgrade, to which shear stress is applied by embankment on soft ground. Immediate settlement and consolidation settlement are discussed by comparing the field measurement of the Yangsan test embankment on treated soft foundation by vertical paper drains.

  • PDF

Behavior of Quaywall Pile by Lateral Movement of Revetment on Soft Ground (연약지반 호안의 측방유동에 따른 안벽 말뚝의 거동)

  • Shin, Eunchul;Park, Jeongjun;Ryu, Ingi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.53-62
    • /
    • 2006
  • Recently, the lateral displacement of the passive piles which are installed under the revetment on the soft ground is very important during the land reclamation work along the coastal line. The revetment on the soft clay develops the lateral displacement of ground when the revetment loading exceeds a certain limit. The lateral displacement of ground causes an excessive deformation of underground structure itself and develops lateral earth pressure against the pile foundation. The subject of study is to investigate the lateral displacement of pile foundation during the construction of container terminal at the ${\bigcirc}{\bigcirc}{\bigcirc}{\bigcirc}$ port in Incheon. The displacement of pile and the vertical settlement were measured in the field and finite element method(FEM) analysis for each construction sequence was performed using AFFIMEX(Ver 3.4). From the comparison of the results from field measurement and the finite element analysis, the settlement of the reventment has already occurred at the time of field measurements. Since then, the noticeable lateral displacement of piles and settlement were occurred during the filling of dredged soil inside the revetment dredging and reclaiming work. After completing filling, the lateral displacement and field settlement were reduced remarkably. Generally, the results from the finite element analysis show larger than those from the measurement.

  • PDF

Finite Element Analysis for the Effects on the Stiffness of the Embankment and Sandmat on the Deformation Property and the Safety of Road Embankment (성토체 및 모래매트의 강성이 하부지반의 변형과 성토체의 안전에 미치는 영향에 대한 유한요소해석)

  • Bae, Woo-Seok;Kim, Jong-Woo;Kwon, Young-Cheul
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.57-65
    • /
    • 2007
  • Effects on the stiffness of the embankment and sandmat on the construction safety of road embankment was investigated in this study by the numerical experiments using FEM. Two points was mainly focused in this study especially. First the deformation characteristics by the change of the stiffness of sand mat and embankment was investigated by the analyzing the consolidation settlement at the center of the embankment and the lateral displacement at the toe of the embankment. And, the effect of the stiffness on the stress distribution characteristics was also investigated in this study. Furthermore, slope stability analysis was carried out to gain the safe factor by change the stiffness of the sandmat and the embankment. The objective of the study is supplying the result of the numerical experiments for the geotechnical engineers who use the FEM for the safety design of the soil structures. As a result, the stiffness of the superstructures greatly affects on the deformation characteristics both in consolidation settlement and lateral displacement. However, it can be aware that it is not dominants to the stress distribution in the aspect that the no changes in the residual excess pore water pressure. Therefore, the decision of the stiffness has to be carried out deliberately considering not only the consolidation the magnitude of the settlement and the lateral displacement, but the slope stability.

An Experimental Study on the Estimation of Optimum Length of Soil Flow Protector with Wall Stiffness (벽체 강성에 따른 토사유입차단판의 최적 길이 산정에 관한 실험적 연구)

  • Yoo, Jae-Won;Seo, Min-Su;Son, Su-Won;Im, Jong-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.789-799
    • /
    • 2019
  • The settlement hardly occurs in structures supported by pile foundation such as abutment, culvert but a cavity is formed in the lower part of a structure. As a result, soil discharged from the lateral ground to the cavity accelerates the settlement of the lateral ground of the structure, resulting in a larger settlement. Therefore, in order to prevent problems caused by cavity under the structure supported by pile foundation, soil Flow Protector (briefly called 'FLP'), which can be easily installed on the side of structure, was developed. In this study, an laboratory model test was carried out to prove the reduction effect of settlement and to estimate the optimal installation length of the FLP. As a result, the installation of the FLP reduced the settlement of the lateral ground and prevented the leakage of lateral ground soil into the cavity. If the stiffness of the FLP is small, the state or active earth pressure is generated in the upper part, which is not favorable for stability. But if the stiffness of the FLP is high enough, the passive earth pressure area is generated in the upper part, which will be advantageous for the stability. Also, the increased installation length of FLP is effective to reduce the settlement. And the ratio of the optimal length of the FLP to the box structure height (H = 250 mm) are flexible FLP 1.38, stiff FLP 0.73.

Suggestion of the Settlement Estimation Method for Granular Compaction files Considering Lateral Deformations (횡방향 변형을 고려한 조립토 다짐말뚝의 침하량 평가기법 제안)

  • Hwang Jung-Soon;Kim Hong-Taek;Kim Seung-Wook;Koh Yong-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2005
  • In cases of the loosely accumulated ground and soft clayey soils, the settlement criterion usually governs in evaluating the stability of structures. The settlement is also a dominant factor to control the design of granular compaction piles mainly applied to the reinforcement of foundation structures in soft ground. In the previous studies, settlement behaviors of granular compaction piles have generally been analyzed with an evaluation of the settlement reduction factor based on the load-sharing ratio and the replacement ratio. In this approach, however, since the reinforced ground with granular compaction piles is simplified as the composite ground, only the difference of a relative vertical strength between piles and soils is taken into account without reflecting lateral behaviors of granular compaction piles. In the present study, the method of estimating the settlement of granular compaction piles is proposed by synthetically considering a vertical strength of the ground, lateral behaviors of granular compaction piles, the strength of pile materials, a pile diameter, and an installation distance of the pile. Further, far the verification of a validity of the proposed method, predicted settlements are compared with results from previous studies. In addition, parametric studies are performed together with detailed analyses of relevant design parameters.

Numerical study on the influence of embedment footing and vertical load on lateral load sharing in piled raft foundations

  • Sommart Swasdi;Tanan Chub-Uppakarn;Thanakorn Chompoorat;Worathep Sae-Long
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.545-561
    • /
    • 2024
  • Piled raft foundation has become widely used in the recent years because it can increase bearing capacity of foundation with control settlement. The design for a piled raft in terms vertical load and lateral load need to understands contribution load behavior to raft and pile in piled raft foundation system. The load-bearing behavior of the piled raft, especially concerning lateral loads, is highly complex and challenge to analyze. The complex mechanism of piled rafts can be clarified by using three dimensional (3-D) Finite Element Method (FEM). Therefore, this paper focuses on free-standing head pile group, on-ground piled raft, and embedded raft for the piled raft foundation systems. The lateral resistant of piled raft foundation was investigated in terms of relationship between vertical load, lateral load and displacement, as well as the lateral load sharing of the raft. The results show that both vertical load and raft position significantly impact the lateral load capacity of the piled raft, especially when the vertical load increases and the raft embeds into the soil. On the same condition of vertical settlement and lateral displacement, piled raft experiences a substantial demonstrates a higher capacity for lateral load sharing compared to the on-ground raft. Ultimately, regarding design considerations, the piled raft can reliably support lateral loads while exhibiting behavior within the elastic range, in which it is safe to use.

A Study on Lateral Displacement of Caisson Constructed on Improved Ground (개량 지반에 설치된 케이슨의 측방변위에 대한 연구)

  • Kim, Myunghak;Lee, Sangwook;Yoon, Minseung;Han, Byungwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.33-41
    • /
    • 2011
  • In case of building up port facilities on soft ground, unsymmetrical surcharge of embankment, which make the excess pore water pressure to increase, causes to occur lateral displacement due to plasticity of soil. A study on lateral displacement and settlement of the caisson, which is installed on improved ground, was accomplished. The field measurement data and calculated values obtained from FEM program of Plaxis were compared and analyzed. For numerical analysis, the properties of soils, constructions stage and time were considered. Lateral displacement was measured at the point of inclinometers installed in front of caisson. Settlement was measured at the center of extra embankment behind of caisson. Comparison of measured and calculated for lateral displacement showed that the calculated value was greater than the measured, and increasing trend was different. The calculated value showed step increasing as step extra embankment applied, whereas the measured gradually was increased. For settlement of embankment, the amount of both measured and calculated were similar, but the trend was different like that of lateral movement.

Model Tests on Ground Deformation during Trench Excavation for Diaphragm Walls (지중연속벽 시공을 위한 트렌치 굴착시 지반변형에 관한 모형실험)

  • Hong, Won-Pyo;Lee, Moon-Ku;Lee, Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.77-88
    • /
    • 2006
  • A series of model tests were performed to investigate the ground deformation during trench excavation for diaphragm walls. An apparatus was manufactured to observe the failure pattern of a slurry-supported trench in sandy ground. Ground deformations including settlement and lateral displacement of the surrounding ground adjacent to the trench were carefully monitored during excavation. Experimental observations indicated that the settlement of the adjacent ground increased with closing to the trench. Especially, the considerable settlement occurred at the distance which was equal to 40% of the excavation depth. And, the higher settlement was obtained when the relative density of ground was looser and the ground water table was higher. Also, the lateral wall face of excavated trench was bulged with lowering the slurry level In stages and then the upper part of trench failed finally. The envelope of ground surface settlement could be represented as a hyperbolic line and the measured settlement was smaller than those predicted by Clough and O'Rourke (1990).