• Title/Summary/Keyword: Lateral response

Search Result 799, Processing Time 0.026 seconds

Prediction of Compressive Behavior of FRP-Confined Concrete Based on the Three-Dimensional Constitutive Laws (3차원 구성관계를 고려한 FRP-구속 콘크리트의 압축거동 예측모델)

  • Cho Chang-Geun;Kwon Min-ho
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.501-509
    • /
    • 2004
  • The proposed model can predict the compressive behaviors of concrete confined with fiber reinforced polymer (FRP) jacket. To model confining concrete by FRP jackets, the hypoelasticity-based constitutive law of concrete In tri-axial stress states has been presented. The increment of strength of concrete has been determined by the failure surface of concrete in tri-axial states, and its corresponding peak strain is computed by the strain enhancement factor that is proposed in the present study, Therefore, the newly proposed model is a load-dependent confinement model of concrete wrapped by FRP jackets to compare the previous models which are load-independent confinement models. The behavior of FRP jackets has been modeled using the mechanics of orthotropic laminated composite materials in two-dimension. The developed model is implemented into the incremental analysis of compressive tests. The verification study with several different experiments shows that the model is able to adequately capture the behavior of the compression test by including better estimations of the axial responses as well as the lateral response of FRP-confined concrete cylinders.

A Simplified Numerical Model for an Integral Abutment Bridge Considering the Restraining Effects Due to Backfill

  • Hong, Jung-Hee;Jung, Jae-Ho;You, Sung-Kun;Yoon, Soon-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.759-767
    • /
    • 2003
  • This paper presents the simplified but more rational analysis method for the prediction of additional internal forces induced in integral abutment bridges. These internal forces depend upon the degree of restraint provided tc the deck by the backfill soil adjacent to the abutments and piles. In addition, effect of the relative flexural stiffness ratio among pile foundations, abutment, and superstructure on the structural behavior is also an important factor. The first part of the paper develops the stiffness matrices, written in terms of the soil stiffness, for the lateral and rotational restraints provided by the backfill soil adjacent to the abutment. The finite difference analysis is conducted and it is confirmed that the results are agreed well with the predictions obtained by the proposed method. The simplified spring model is used in the parametric study on the behavior of simple span and multi-span continuous integral abutment PSC beam bridges in which the abutment height and the flexural rigidity of piles are varied. These results are compared with those obtained by loading Rankine passive earth pressure according to the conventional method. From the results of parametric study, it was shown that the abutment height, the relative flexural rigidity of superstructure and piles, and the earth pressure induced by temperature change greatly affect the overall structural response of the bridge system. It may be possible to obtain more rational and economical designs for integral abutment bridges by the proposed method.

Microinjection of Glutamate into the Amygdala Modulates Nociceptive and Cardiovascular Response in Freely Moving Rats

  • Ahn, Dong-Kuk;Kim, Yun-Sook;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.687-693
    • /
    • 1998
  • This study was performed to examine the mean arterial pressure and nociceptive jaw opening reflex after microinjection of glutamate into the amygdala in freely moving rats, and to investigate the mechanisms of antinociceptive action of amygdala. Animals were anesthetized with pentobarbital sodium (40 mg/kg, ip). A stainless steel guide cannula (26 gauge) was implanted in the amygdala and lateral ventricle. Stimulating and recording electrodes were implanted into each of the incisor pulp and anterior digastric muscle. Electrodes were led subcutaneously to the miniature cranial connector sealed on the top of the skull with acrylic resin. After 48 hours of recovery from surgery, mean arterial pressure and digastric electromyogram (dEMG) were monitored in freely moving rats. Electrical shocks (200 ${\mu}sec$ duration, $0.5{\sim}2$ mA intensity) were delivered at 0.5 Hz to the dental pulp every 2 minutes. After injection of 0.35 M glutamate into the amygdala, mean arterial pressure was increased by $8{\pm}2$ mmHg and dEMG was suppressed to $71{\pm}5%$ of the control. Injection of 0.7 M glutamate elevated mean arterial pressure by $25{\pm}5$ mmHg and suppressed dEMG to $20{\pm}7%$ of the control. The suppression of dEMG were maintained for 30 minutes. Naloxone, an opioid receptor antagonist, inhibited the suppression of dEMG elicited by amygdaloid injection of glutamate from $28{\pm}4\;to\;68{\pm}5%$ of the control. Methysergide, a serotonin receptor antagonist, also inhibited the suppression of dEMG from $33{\pm}5\;to\;79{\pm}4%$ of the control. However, phentolamine, an ${\alpha}-adrenergic$ receptor antagonist, did not affect the suppression of dEMG. These results suggest that the amygdala can modulate both cardiovascular and nociceptive responses and that the antinociception of amygdala seems to be attributed to an augmentation of descending inhibitory influences on nociceptive pathways via serotonergic and opioid pathways.

  • PDF

DYNAMIC 3-DIMENSIONAL FINITE ELEMENT ANALYSIS OF MANDIBULAR FRACTURE MECHANISM (충격하중(衝擊荷重)과 하악골(下顎骨) 골절발생(骨折發生) 기전(機轉)의 유한요소법적(有限要素法的) 연구(硏究))

  • Oh, Seung-Hwan;Kim, Yeo-Gab
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.3
    • /
    • pp.470-487
    • /
    • 1996
  • The purpose of this study was to investigate the dynamic response of the mandible to impact and provide insight into the fracture mechanism of the mandible, by 3-dimensional finite element method. The finite element model of the mandible was developed and calculated using NASTRAN/XL (MSC co. U.S.A.) and the linear dynamic transient analysis was performed according to the impulsive force direction, force type and impulse time to the mandible. At first, the load was applied on the mandibular symphysis, body, angle and subcondylar area in the horizontal mandibular plane and the computed stress-time histories at 14 locations of the mandible were obtained. Secondly, the impulsive force was directed to the symphyseal area with changing the force magnitude and impulse time, and calculated the node displacement at 8 locations of mandible. The conclusions from from this study were as follows. 1. The appearance of impulsive energy transmission was different to the direction of impulse to the mandible. 2. The impulsive stress and deformation were larger in lingual or medial side than buccal or lateral in the mandible. 3. The velocity, appearance of energy transmission and the fracture pattern in mandible were affected rather impulse time than force. 4. The horizontal impact to the one side of mandible did not have effect on the stress and displacement of contralateral mandible. From the above results, fracture pattern in symphysis can be showed as simple or comminuted, multiple or associated in body and angle and solitary in subcondyle area.

  • PDF

Spectral Fatigue Analysis for Topside Structure of Offshore Floating Vessel

  • Kim, Dae-Ho;Ahn, Jae-Woo;Park, Sung-Gun;Jun, Seock-Hee;Oh, Yeong-Tae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.239-251
    • /
    • 2015
  • In this study, a spectral fatigue analysis was performed for the topside structure of an offshore floating vessel. The topside structure was idealized using beam elements in the SACS program. The fatigue analysis was carried out considering the wave and wind loads separately. For the wave-induced fatigue damage calculation, motion RAOs calculated from a direct wave load analysis and regular waves with different periods and unit wave heights were utilized. Then, the member end force transfer functions were generated covering all the loading conditions. Stress response transfer functions at each joint were produced using the specified SCFs and member end force transfer functions. fatigue damages were calculated using the obtained stress ranges, S-N curve, wave spectrum, heading probability of each loading condition, and their corresponding occurrences in the wave scatter diagrams. For the wind induced fatigue damage calculation, a dynamic wind spectral fatigue analysis was performed. First, a dynamic natural frequency analysis was performed to generate the structural dynamic characteristics, including the eigenvalues (natural frequencies), eigenvectors (mode shapes), and mass matrix. To adequately represent the dynamic characteristic of the structure, the number of modes was appropriately determined in the lateral direction. Second, a wind spectral fatigue analysis was performed using the mode shapes and mass data obtained from the previous results. In this analysis, the Weibull distribution of the wind speed occurrence, occurrence probability in each direction, damping coefficient, S-N curves, and SCF of each joint were defined and used. In particular, the wind fatigue damages were calculated under the assumption that the stress ranges followed a Rayleigh distribution. The total fatigue damages were calculated from the combination with wind and wave fatigue damages according to the DNV rule.

Power and Trim Estimation for Helicopter Sizing and Performance Analysis

  • Laxman, Vaitla;Lim, Jae-Hoon;Shin, Sang-Joon;Ko, Kwang-Ho;Jung, Sung-Nam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.156-162
    • /
    • 2011
  • The preliminary design stage of helicopters consists of various operations and in each operation design several detailed analysis tasks are needed. The analysis tasks include performance and the required power estimation. In helicopter design, those are usually carried out by adopting the momentum theory. In this paper, an explicit form of computational analysis based on the blade element theory and uniform/non-uniform inflow model is developed. The other motivation of the present development is to obtain trim and required power estimation for various helicopter configurations. Sectional and hub loads, power, trim, and flapping equations are derived by using a symbolic tool. Iterative computations are carried out till convergence is achieved in the blade response, inflow, and trim. The predictions regarding the trim and power estimation turn out to be correlated well with the experimental results. The effect of inflow is further investigated. It is found that the present prediction for the lateral cyclic pitch angle is improved with the non-uniform inflow model as compared to that by the uniform inflow model. The presently improved trim and power estimation will be useful for future helicopter sizing and performance analysis.

Effects of Menstrual Cycle Phase on Knee Muscle Activity during One Leg Landing in Non-athletic Females

  • Lee, Ji-Min;Shin, Won-Seob
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.5
    • /
    • pp.308-313
    • /
    • 2016
  • Purpose: This study investigated the effects of sex hormones across menstrual cycle phases on knee muscle activity during one-leg landing in non-athletic females. Methods: Twenty-six healthy females who reported normal menstrual cycles for the previous three months were tested when estrogen levels were highest (ovulation) and lowest (menstruation). Knee muscle activity was analyzed based on electromyography (EMG) data recorded during landing on a 30-cm box. Before data collection, each subject was trained in single-leg landing tasks ten times. Landing was analyzed by measuring the average of three landing tasks. EMG data were collected between the moment of ground contact and the point of knee maximum flexion. The maximum voluntary isometric contraction (MVIC) for normalization that was recorded as the EMG root-mean-square (RMS) during landing was tested, with paired t-tests used to assess differences in knee muscle activity according to menstrual cycle phases. Results: The results showed that the soleus, semitendinosus, and lateral gastrocnemius muscle activity during landing was differed significantly during ovulation compared to that during menstruation (p<0.05). No significant differences in vastus medialis activity were found between menstrual and ovulatory phases during landing (p>0.05). Conclusion: Changes in the menstrual cycle in response to sex hormones changed the activity of muscles around the knee during landing. Females utilize different muscle activity control strategies during different phases of the menstrual cycle, which may contribute to increased ACL injury risk.

Evaluation of inelastic performance of moment resisting steel frames designed by resizing algorithms (재분배 기법 적용에 따른 모멘트 저항골조의 비선형 특성 평가)

  • Seo, Ji Hyun;Kwon, Bong kwon;Park, Hyo Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.361-371
    • /
    • 2006
  • In recent years, to overcome drawbacks related to the aplicati on of classical structural optimization algorithms, various drift design methods based on factores of member displacement participation factors have been developed to size members if they satisfy stiffness criteria. In particular, a resizing algorithm based on dynamic displacement participation factors from the response spectrum analysis has been applied in the drift design of steel structures subjec ted to seismic lateral forces. In this aproach, active members are selected for displacement control based on the displacement participation fa ve members may be taken out and added to the active members for the drift control. The resizing algorithm can be practically and effectively applied to drift design of high-rise buildings however, the inelastic behavior o f the resizing algorithm has not ben evaluated yet. To develop the resizing algorithm considering the performance of nonlinearity as well a s elastic stifness, the evaluation model of resizing algorithm s is developed and aplied to the examples of moment-resisting steel frame, which is one of the simplest structural systems. The inelastic behavior of moment-resisting steel frame designed by the resizing algorithm is also discussed.

Changes of Plasma Lidocaine Concentrations after Stellate Ganglion Block according to Volume-changes of 1% Lidocaine (성상신경절차단시 주입된 1% Lidocaine 양에 따른 혈중 Lidocaine 농도 변화)

  • Song, Sun-Ok;Suh, Yung-Ho
    • The Korean Journal of Pain
    • /
    • v.14 no.1
    • /
    • pp.26-31
    • /
    • 2001
  • Background: Sympathetic blocks with local anesthetics are used to differentiate sympathetically- maintained pain (SMP) from sympathetically-independent pain (SIP). However, systemic lidocaine is also used in the management of neuropathic pain. Therefore, there may be possibility of a false positive response in relieving their pain by systemic absorption of lidocaine following a diagnostic sympathetic block in patients with SIP. In this study, we measured the plasma lidocaine concentrations after a stellate ganglion block (SGB) using three volumes of 1% lidocaine. Methods: This prospective, crossover study was performed in 3 patients who experience sudden hearing loss and in 4 volunteers. Each person received SGB three times using three different volumes (6 ml, 12 ml and 16 ml) of 1% lidocaine at one week intervals. SGB was performed using a 23 G butterfly needle via a paratracheal approach by two persons. Two ml of venous blood was obtained from a prepared contra-lateral sided venous route at 1, 3, 5, 7, 10, 20 and 60 min after SGB. Plasma lidocaine level was analyzed by immunoassay. Results: Mean plasma lidocaine concentrations correlated well with the volumes of 1% lidocaine used in SGB; larger volumes showed higher concentrations (P < 0.01). Mean peak plasma concentrations were $1.08{\pm}0.18$ in 6 ml, $1.90{\pm}0.47$ in the 12 ml and $2.74{\pm}0.67{\mu}g/ml$ in the 16 ml groups (P < 0.01). The mean time to reach peak plasma concentration was not significantly different between the three groups. Conclusions: The peak plasma lidocaine concentrations in SGB using large volume were found to be similar to that of IV lidocaine infusion in the management of neuropathic pain. These data suggest that diagnostic sympathetic block may result in many false positive responses for SMP. Part of its effect may be related to systemic local anesthetic absorption and not to a sympathetic block. Therefore, physicians may be required to use optimal volumes and minimal concentration of local anesthetic in diagnostic sympathetic block procedures and also make a careful assessment of the performance of a permanent sympathetic block.

  • PDF

Flight Dynamic Identification of a Model Helicopter Using CIFER® (III) - Transfer Function Analysis - (CIFER ® 를 이용한 무인 헬리콥터의 동특성 분석 (III) - 전달함수 해석 -)

  • Bae, Yeong-Hwan;Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.192-200
    • /
    • 2012
  • Purpose: Aerial application of chemicals with an agricultural helicopter allows for precise and timely spraying and reduces working labor and pollution. An attitude controller for an agricultural helicopter would be helpful to aerial application operator. The objectives of this paper are to determine the transfer function models and to estimate the handling qualities of a bare-airframe model helicopter. Methods: Transfer functions of a model unmanned helicopter were estimated by using NAVFIT and DERIVID modules of the $CIFER^{(R)}$ program to the time history data of frequency sweep flight tests. Control inputs of the transfer functions were elevator, aileron, rudder and collective pitch stick positions and the outputs were resulting on-axis movements of the fuselage. Results: Minimum realization of the transfer functions for pitch rate output to elevator control input and roll rate output to aileron control input produced second order transfer functions with undamped natural frequencies around 3.0 Hz and damping ratios of 0.139 and 0.530, respectively. The equivalent time delays of the transfer functions ranged from 0.16 to 0.44 second. Sensitivity analysis of the proposed parameters allowed derivation of minimal realization of the transfer functions. Conclusions: Handling quality of the model helicopter was addressed based on the eigenvalues of the transfer functions, corresponding undamped natural frequencies with damping ratios. The equivalent time delays of the lateral-directional motion ranged from 0.16 to 0.44 second, longer than the 0.1 to 0.15 second requirement for well-controlled typical manned aerial vehicles.