• Title/Summary/Keyword: Lateral resistance force

Search Result 122, Processing Time 0.031 seconds

Application of self-centering wall panel with replaceable energy dissipation devices in steel frames

  • Chao, Sisi;Wu, Hanheng;Zhou, Tianhua;Guo, Tao;Wang, Chenglong
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.265-279
    • /
    • 2019
  • The self-centering capacity and energy dissipation performance have been recognized critically for increasing the seismic performance of structures. This paper presents an innovative steel moment frame with self-centering steel reinforced concrete (SRC) wall panel incorporating replaceable energy dissipation devices (SF-SCWD). The self-centering mechanism and energy dissipation mechanism of the structure were validated by cyclic tests. The earthquake resilience of wall panel has the ability to limit structural damage and residual drift, while the energy dissipation devices located at wall toes are used to dissipate energy and reduce the seismic response. The oriented post-tensioned strands provide additional overturning force resistance and help to reduce residual drift. The main parameters were studied by numerical analysis to understand the complex structural behavior of this new system, such as initial stress of post-tensioning strands, yield strength of damper plates and height-width ratio of the wall panel. The static push-over analysis was conducted to investigate the failure process of the SF-SCWD. Moreover, nonlinear time history analysis of the 6-story frame was carried out, which confirmed the availability of the proposed structures in permanent drift mitigation.

Nonlinear response of laterally loaded rigid piles in sand

  • Qin, Hongyu;Guo, Wei Dong
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.679-703
    • /
    • 2014
  • This paper investigates nonlinear response of 51 laterally loaded rigid piles in sand. Measured response of each pile test was used to deduce input parameters of modulus of subgrade reaction and the gradient of the linear limiting force profile using elastic-plastic solutions. Normalised load - displacement and/or moment - rotation curves and in some cases bending moment and displacement distributions with depth are provided for all the pile tests, to show the effect of load eccentricity on the nonlinear pile response and pile capacity. The values of modulus of subgrade reaction and the gradient of the linear limiting force profile may be used in the design of laterally loaded rigid piles in sand.

Analysis of CWR Track Considering Wheel Loads (열차하중을 고려한 장대레일 궤도 해석)

  • Han, Sang-Yun;Kang, Young-Jong;Han, Teak-Hee;Lim, Nam-Hyoung;Kim, Jung-Hun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2487-2492
    • /
    • 2011
  • At high rail temperature above the neutral temperature, high compressive axial stresses will occur in the rails. High thermal axial force and vehicle loads cause the track to shift in a lateral direction and the formation of track geometry imperfections (track irregularity). When the thermal stress level and track irregularity with vehicle load reach a critical value, the track loses stability. In many studies, the stability of CWR tracks is analyzed. However these studies are only considered in temperature load. The main objective of this investigation was to estimate a new, comprehensive, realistic, the stability of CWR tracks considering wheel load. The ballast resistance is changed by wheel load. When the wheel load is applied, rails and ties are moved upward or downward. In this case the friction between ties and ballasts is decreased or increased. In this study the change of the ballast resistance of each tie was applied to the nonlinear analysis of CWR tracks.

  • PDF

Modified FHWA Design Method Considering Bending Stiffness of Soil Nail (휨강성을 고려한 수정 FHWA 쏘일네일 설계법 제안)

  • Kim, Nak-Kyung;Jung, Jung-Hee;Ju, Yong-Sun;Kim, Sung-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1406-1416
    • /
    • 2008
  • Soil nailing is used as a method of slope stabilization and excavation support. The design method of soil nail are based on experience or assumption of interaction between soil and reinforcement. Most design methods simply considers the tension of reinforcement for analysis of slope stabilization. Soil nails interact with soils under combined loading of shear and tension. Jewell & Pedley(1990) suggested a design equation of shear force with bending stiffness and discussed that the magnitude of the maximum shear force is small in comparison with the maximum axal force. However, they have used a very conservative limiting bearing stress on nails. This paper discusses that the shear strength of soil nails should not be disregarded with proper bearing stresses on nails. The modified FHWA design method was proposed by considering shear forces on nails with bending stiffness.

  • PDF

Study on the Machinability of Pinus densiflora at Chunyang District for Wood Patterns - Cutting Force, Surface Roughness and Suface Phenomenon by Face Milling - (목형용(木型用) 춘양목(春陽木)의 절삭가공(切削加工) 특성(特性)에 관(關)한 연구(硏究)(제2보(第2報)) - 정면(正面)밀링 절삭(切削)에 의한 절삭저항(切削抵抗), 표면조도(表面粗度) 및 가공표면상태(加工表面狀態) -)

  • Kim, Jeong-Du
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.61-69
    • /
    • 1988
  • Recently the automization of wood manufacturing and the development of CNC machine tools becomes the center of interest. Cutting mechanism, tool wear and the roughness of machined surface have been studied. In the studies about wood for special uses, concrete data of cutting is desired. While Pinus densiflora is characterized that heartwood develops as age increases, Chunyang District has the characteristic of strength, red color, relatively regular chap and high heartwood - percentage. But there is no data about cutting this wood, Chunyang District. In this study face milling by sintered carbide tool was excuted to Chunyang District. Cutting force, Surface roughness and states were investigated with regard to cutting speed. Example results were as follows; 1) Mean cutting resistance against lateral component force and longitudinal component force decreased rapidly up to cutting speed of 155 m/min, and remains constant above this speed. 2) The surface roughness of cutting surface lowered as cutting speed increased, regardless of fiber formation. Radial rougness of fiber is larger than lineal surface roughness. 3) Increase in Cutting speed made machining mark restrained. Down-milling showed larger marks than up-milling.

  • PDF

Experimental behaviour of circular concrete filled steel tube columns under lateral cyclic loading

  • Cao, Vui Van;Vo, Cuong Trung;Nguyen, Phuoc Trong;Ashraf, Mahmud
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.445-460
    • /
    • 2021
  • This study experimentally explored the behaviour of 12 concrete filled steel tube (CFST) and steel tube columns subjected to lateral cyclic loading. The L/D ratio was 12.3 while D/t ratios were 45.4, 37.8 and 32.4, classifying these 12 specimens into 3 groups. Each group included 3 CFST and 1 steel tube columns and were tested to failure. The experimental results indicated that CFST specimens reached the state of 'collapse prevention' (drift 4%) prior to the occurrence of local buckling. Strength degradation of CFST specimens did not occur up to the failure by buckling. This showed the favourable characteristic of CFST columns in preventing collapse of structures subjected to earthquakes. The high energy absorption capability in the post collapse limit state was appropriate for dissipating energy in structures. Compared to steel tube columns, CFST columns delayed local buckling and prevented inward buckling. Consequently, CFST columns exhibited their outstanding seismic performance in terms of the increased ultimate resistance, capacity to sustain 2-3 additional load cycles and significantly higher drift. A simple and reasonably accurate model was proposed to predict the ultimate strength of CFST columns under lateral cyclic loading.

Lateral Behavior and Joint Stability of Non-Welding Composite Pile (무용접 복합말뚝 수평거동특성 및 연결부 안정성 평가)

  • Ko, Jun-Young;Shin, Yun-Sup;Jeong, Sang-Seom;Boo, Kyo-Tag
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.108-118
    • /
    • 2009
  • As increasing demand on marine structures and skyscrapers, a deep shaft pile is frequently to be used for the place having weak ground strength. Because heavy horizontal force is generally applied on upper part of pile foundation used in engineering field, steel pile is highly used due to its high resistance to shear force and bending moment, and its capability to carry heavy loads. The steel pile has advantage in good constructibility, high applicability on site and easy handing, but has disadvantage in cost, more expensive than other material pile. This study is to examine the composite pile that makes economical construction possible by reducing material cost of pile; using steel and PHC pile A non welding connection method is applied to this composite pile. This study had step of comparison with the result of numerical analysis after analyzing the result of field test. Numerical analysis is the process of analyzing lateral behavior of non welding composite pile. Moreover, detailed analysis was implemented in order to evaluate joint stability. As a result of the analysis, we could interpret that the stability of the connection part is ensured as seeing the smaller internal stress than approved internal stress. Based on this study, we analyzed lateral behavior of non welding composite pile, which ensured the stability of connection part.

  • PDF

Comparison of Lateral Pile Behavior under Static and Dynamic Loading by Centrifuge Tests (원심모형 실험을 이용한 지반-말뚝 상호작용의 정적 및 동적 거동 평가)

  • Yoo, Min-Taek;Kwon, Sun-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.51-58
    • /
    • 2018
  • In this study a series of centrifuge tests were carried out in dry sand to analyze the comparison of lateral pile behavior for static loading and dynamic loading condition. In case of static loading condition, the lateral displacement was applied up to 50% of pile diameter by deflection control method. And the input sine wave of 0.1 g~0.4 g amplitude and 1 Hz frequency was applied at the base of the soil box using shaking table for dynamic loading condition. From comparison of experimental static p-y curve obtained from static loading tests with API p-y curves, API p-y curves can predict well within 20% error the ultimate subgrade reaction force of static loading condition. The ultimate subgrade reaction force of experimental dynamic p-y curve is 5 times larger than that of API p-y curves and experimental static p-y curves. Therefore, pseudo-static analysis applied to existing p-y curve for seismic design could greatly underestimate the soil resistance at non-linear domain and cause overly conservative design.

Dynamic behavior of SRC columns with built-in cross-shaped steels subjected to lateral impact

  • Liu, Yanhua;Zeng, Lei;Liu, Changjun;Mo, Jinxu;Chen, Buqing
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.465-477
    • /
    • 2020
  • This paper presents an investigation on the dynamic behavior of SRC columns with built-in cross-shaped steels under impact load. Seven 1/2 scaled SRC specimens were subjected to low-speed impact by a gravity drop hammer test system. Three main parameters, including the lateral impact height, the axial compression ratios and the stirrup spacing, were considered in the response analysis of the specimens. The failure mode, deformation, the absorbed energy of columns, as well as impact loads are discussed. The results are mainly characterized by bending-shear failure, meanwhile specimens can maintain an acceptable integrity. More than 33% of the input impact energy is dissipated, which demonstrates its excellent impact resistance. As the impact height increases, the flexural cracks and shear cracks observed on the surface of specimens were denser and wider. The recorded time-history of impact force and mid-span displacement confirmed the three stages of relative movement between the hammer and the column. Additionally, the displacements had a notable delay compared to the rapid changes observed in the measured impact load. The deflection of the mid-span did not exceed 5.90mm while the impact load reached peak value. The impact resistance of the specimen can be improved by proper design for stirrup ratios and increasing the axial load. However, the cracking and spalling of the concrete cover at the impact point was obvious with the increasing in stiffness.

A THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON THE LOCATION OF CENTER OF RESISTANCE DURING INTRUSION OF UPPER ANTERIOR TEETH (상악 전치 intrusion시 저항중심의 위치에 관한 3차원 유한요소법적 연구)

  • Park, Chun-Keun;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.27 no.2
    • /
    • pp.259-272
    • /
    • 1997
  • This study was performed to locate the anteroposterior position of the center of resistance of upper anterior teeth when intrusive forces are acted on them by applying segmented arch mechanics. Three-dimensional finite element model of upper six anterior teeth, periodontal ligament and alveolar bone was constructed The locations of the center of resistance were compared according to the three variables, which are number of teeth contained in anterior segment, axial inclination of anterior teeth, and degree of alveolar bone loss. The following conclusions were drawn from this study; 1. When the axial inclination and alveolar bone height were normal, the locations of center of resistance of anterior segment according to the number of teeth contained were as follows; 1). In 2 teeth segment, the center of resistance was located in the distal area of lateral incisor bracket 2) In 4 teeth segment, the center of resistance was located in the distal 2/3 of the distance between the brackets of lateral incisor and canine. 3) In 6 teeth segment, the center of resistance was located in 3mm distal of canine bracket, which is interproxirnal area. between canine and 1st premolar. 4) As the number of teeth contained in anterior segment increased, the center of resistance shifted to the distal side. 2. As the labial inclination of incisors increased, the center of resistance shifted to the distal side. 3. As the alveolar bone loss increased, the center of resistance shifted to the distal side.

  • PDF