• Title/Summary/Keyword: Lateral loaded pile

Search Result 69, Processing Time 0.041 seconds

Model Tests on the Characteristics of Lateral Behavior of Steel Pipe Pile in Homogeneous and Nonhomogeneous Soil Conditions (균질 지반과 비균질 지반에서 강관 모형말뚝의 수평거동 특성에 관한 모형실험)

  • 김병탁;김영수
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.153-166
    • /
    • 1998
  • This paper shows the results of a series of model tests on the behavior of steel pipe pile which is subjected to lateral and inclined loads in homogeneous and non-homogeneous Nak-dong River sands. Non-homogeneous soil consisted of two layers, upper and lower layer. The purpose of the present paper is to investigate the effect of ratio of lower layer height to embedded pile length, ratio of soil modules of upper layer to lower layer and inclined load on the behavior of single pile. These effects can be quantified only by the results of model tests. As a result. in non-homogeneous sand soil, it is shown that the lateral behavior depends upon the ratio of soil modules of upper layer to lower layer more than other factors. And it was found that the relationship between the deflection ratio of non-homogeneous sand to homogeneous sand and the ratio of lower layer height to embedded pile length can be fitted to exponential function of H/L by model tests results. For the inclined load applied, it is shown that the bending moment-depth relationship is not similar to the case of laterally loaded pile and the depth of maximum bending moment at relative density of 90% increases about 70% more than the pile only loaded laterally.

  • PDF

Uplift Capacity and Creep Behavior of Concrete Pile Driven in Clay (점토지반에 타입된 콘크리트 말뚝의 인발저항 및 크리프 거동)

  • 신은철;김종인;박정준;이학주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.371-378
    • /
    • 2001
  • The working load at pile is sometimes subjected to not only compression load but also lateral load and uplift forces. Pile foundation is essential and uplift load can be applied because of buoyancy, a typhoon, wind or seismic forces. This study was carried out to determine the uplift capacity of concrete pile foundation driven in clay. Pile was driven in clay, between pile and clay adhesion factor was estimated, and it is the mean value between the cast-in-situ-pile and steel pipe pile. When pile foundation is loaded for long time, creep behavior occurs. The behavior of creep is originated from the clay creep contacted with pile. The creep behavior of pile foundation embedded in clay is heavily depended on the thickness of clay around the pile shaft, pore water pressure in clay, and creep behavior of clay.

  • PDF

Lateral Behavior of Single Rigid Driven Pile in Non-Homogeneous Sand (비균질 지반에서 항타 관입한 단일 강성말뚝의 수평거동 연구)

  • 김영수;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.167-185
    • /
    • 1999
  • A series of model tests was performed to find the characteristics of lateral behavior of single rigid pile. This paper shows the results of model tests on the lateral behavior of single rigid driven pile in non-homogeneous(two layered) Nak-Dong River sands. The purpose of this paper is to investigate the effect of the ratio of lower layer thickness to embedded pile length, the coefficient ratio of the subgrade reaction and the pile construction conditions(driven & embedded piles) on the characteristics of lateral behavior of single pile. The results of model tests show that the lateral behavior in non-homogeneous soil depends upon drop energy considerably, that is, in the case of H/L=0.75, as the drop energy increases three times the decrease percentage increases about 2.12 times. In the driven pile with non-homogeneous soil of $E_{h1}/E_{h2}=5.56$, the effect of upper layer with large stiffness on the decrease of lateral deflection is remarkably smaller than embedded pile. In non-homogeneous soil, the maximum bending moment of driven pile is in the range of 100 132% in comparison with embedded pile. The reason is that the stiffness of soil around pile increases with drop vibration and so the pile behavior is similar to the flexible pile behavior by means of the increase of relative stiffness of pile, In this paper, the experimental equations for lateral load and H/L on $y_D/y_E \; & \; MBM_D/MBM_E$ are suggested from model tests.

  • PDF

Analysis of Laterally Loaded Piles Using Soil Resistance of Wedge Failure Mode (Wedge Failure Mode 형태의 반력을 이용한 수평재하 말뚝의 거동 분석)

  • Kim, Young-Ho;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.59-72
    • /
    • 2009
  • The load distribution and deflection of offshore piles are investigated by lateral load-transfer curve method (p-y curve). Special attention is given to the soil-pile interaction and soil resistance of 3D wedge failure mode. A framework for determining a hyperbolic p-y curve is proposed based on theoretical analysis and experimental load test results. The methods for determining appropriate material parameters needed for constructing the proposed p-y curves are presented in this paper. Through comparisons with field case studies, it was found that the proposed method in the present study estimates reasonably the load transfer behavior of pile, and thus, the computed pile responses, such as bending moment and lateral displacement, agree well with the actual measured responses.

Estimation of Ultimate Lateral Resistances of Piles Using CPT Cone Resistance in Sand (사질토지반에서 콘관입저항치 $q_c$에 의한 단말뚝의 극한수평단위지지력 평가)

  • Kim, Min-Kee;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.71-77
    • /
    • 2008
  • In this study, CPT-based methodology for estimating the ultimate lateral resistance, $p_u$, is proposed and verified for lateral loaded piles in sandy soil. Preexistent methods estimating the ultimate lateral resistance, $p_u$, and the ultimate lateral capacity, $H_u$, of pile have been based on the vertical effective stress, relative density, and the coefficient of lateral earth pressure. Similarly, cone resistance $q_c$ in pure sandy soil is expressed by those essential factors. As correlation between $p_u$ and $q_c$ are normalized with average effective stress ${\sigma}_m$, estimation methodology for the lateral loaded pile of $p_u$ in sandy soil is proposed. The method is verified by calibration chamber test results in pure sand. The standard derivation of estimated $p_u$ is 0.279, and COV (Coefficient Of Variation) of estimated $p_u$ is 0.272. These results showed that the estimated pus by the method are analogous with the measured $p_us$ in calibration chamber test.

Estimation of Ultimate Lateral Load Capacity Using CPT Results Considering Lateral Soil Pressure Distribution (수평토압분포를 고려한 CPT 기반의 말뚝극한수평지지력 산정)

  • Kim, Min-Kee;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.37-44
    • /
    • 2009
  • In this study, estimation methodology for the pile of ultimation lateral resistance, pu, and ultimate lateral capacity, Pu, is based on the CPT cone resistance $q_c$. Preexistent methodologies for ultimate lateral resistance and ultimate lateral capacity have been generally represented with relative density, vertical effective stresses, and various $K_0$ values which are important for analyzing sandy soil. These methodologies, however, did not consider the horizontal effective stress and the effects of construction site conditions. Therefore, CPT-based methodology for the estimation of the ultimate lateral pile load capacity Hu was proposed. Calibration chamber test results were analyzed and compared with calculated results. The proposed estimation methodology for the pile of $p_u$ can be effectively utilized as alternative to preexistent methods.

Behavior of Back Ground of the Laterally Loaded Single Pile (수평하중이 작용하는 단독말뚝의 배면지반의 저항거동 특성)

  • Bae, Jong-Soon;Kim, Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.53-60
    • /
    • 2008
  • In this study, various kinds of behavior characteristics such as deformation area zone of back ground, failure angle and rotation point are examined on the laterally loaded single pile in the homogeneous ground through a model test. The main obtained conclusions are summarized as follows; In the back ground of single pile to which the lateral load is applied, failure surface shows almost linear movement characteristics and it is inclined to converge to constant values no matter how the length of pile and the pile head displacement.

Lateral Behavior of Driven Piles Subjected to Cyclic Lateral Loads in Sand (모래지반에서 반복수평하중을 받는 항타 말뚝의 수평거동)

  • Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.41-50
    • /
    • 2010
  • The behavior of laterally cyclic loaded piles is different from that of piles under monotonic loading and depends on soil and load characteristics. In this study, model pile load tests were performed using a calibration chamber to investigate the effects of load characteristics on the behavior of laterally cyclic loaded piles in sand. Results of the model tests show that the ultimate lateral load capacity of laterally cyclic loaded piles decreases linearly with increasing the number of cycles and increases slightly with increasing the magnitude of cyclic lateral loads. When the piles reach the ultimate state, the maximum bending moment developed in the piles decreases linearly with increasing the number of cycles and it occurs at a depth of 0.36 times pile embedded length for all the number of cycles. However, both the magnitude and depth of the maximum bending moment of piles in the ultimate state increase slightly as the magnitude of cyclic lateral loads increases. It is also observed that the cyclic lateral loading generates a decrease in the ultimate lateral load capacity and maximum bending moment for piles in the ultimate state. In addition, based on the model test results, a new empirical equation for the ultimate lateral load capacity of laterally cyclic loaded piles in dense sand is also proposed. A comparison between predicted and measured load capacities shows that the proposed equation reflects satisfactorily the model test results.

Behavior of Lateral Loaded Piles with Pile shape and Length (말뚝형태 및 길이변화를 고려한 수평재하말뚝의 거동특성)

  • Hwang, Sung-Wook;Kim, Min-Kee;Kyung, Du-Hyun;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1125-1131
    • /
    • 2008
  • In this study, Calibration Chamber Tests for cast-in-place piles in sand were performed for measuring behavior properties of piles. These tests were examined effects of various parameters of soil conditions including the relative density($D_R$), the coefficient of earth pressure, and investigated differences between cylindrical pile and taper-shaped pile with the same volumes. The important effect factors of foundation behavior were investigated by considering embedded depth of piles and shapes of piles, and inspected details of lateral behavior of piles. These results were verified reliabilities of each methods for comparing the results estimated with tests and the results by proposed estimating solutions in the past.

  • PDF

Numerical Study on the Effect of Steel Pipe Specification on Pile Behaviour (강관말뚝의 제원이 말뚝거동에 미치는 영향에 관한 수치해석 연구)

  • Park, Jeong-Jun;Lee, Kwang-Wu;You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.5
    • /
    • pp.37-44
    • /
    • 2017
  • In this study, three dimensional numerical analyses were carried out to predict axial (pullout and compressive) and lateral behavior of rock-socketed steel pipe pile varying diameter, wall thickness, and length. As a result of the pile pullout analyses, it was confirmed that the pullout displacement was inversely proportional to the pile diameter for given pile length, thickness, pullout load. Load-settlement relationship of the compressive pile analyses revealed that the effect of pile thickness on pile resistance was more significant than that of pile diameter. In addition, laterally loaded pile analyses showed that pile lateral resistance is influenced above all else by pile diameter. This study showed that it is necessary to conduct numerical analyses to identify the effects of pile diameter, wall thickness, and pile length on the steel pipe pile behavior as a preliminary pile design under specified loading conditions.