• Title/Summary/Keyword: Lateral inflow

Search Result 49, Processing Time 0.03 seconds

DEVELOPMENT OF A REAL-TIME FLOOD FORECASTING SYSTEM BY HYDRAULIC FLOOD ROUTING

  • Lee, Joo-Heon;Lee, Do-Hun;Jeong, Sang-Man;Lee, Eun-Tae
    • Water Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.113-121
    • /
    • 2001
  • The objective of this study is to develop a prediction mode for a flood forecasting system in the downstream of the Nakdong river basin. Ranging from the gauging station at Jindong to the Nakdong estuary barrage, the hydraulic flood routing model(DWOPER) based on the Saint Venant equation was calibrated by comparing the calculated river stage with the observed river stages using four different flood events recorded. The upstream boundary condition was specified by the measured river stage data at Jindong station and the downstream boundary condition was given according to the tide level data observed at he Nakdong estuary barrage. The lateral inflow from tributaries were estimated by the rainfall-runoff model. In the calibration process, the optimum roughness coefficients for proper functions of channel reach and discharge were determined by minimizing the sum of the differences between the observed and the computed stage. In addition, the forecasting lead time on the basis of each gauging station was determined by a numerical simulation technique. Also, we suggested a model structure for a real-time flood forecasting system and tested it on the basis of past flood events. The testing results of the developed system showed close agreement between the forecasted and observed stages. Therefore, it is expected that the flood forecasting system we developed can improve the accuracy of flood forecasting on the Nakdong river.

  • PDF

Lateral inflow velocity computation procedure using a hydraulic flood routing (수리학적 홍수추적을 이용한 측방유입속도 산정)

  • Lee, Gi-Ha;Kim, Jae-Han;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1088-1092
    • /
    • 2005
  • 하도에서의 홍수추적시 유역내의 지류 혹은 지표 및 지하수등은 추적대상이 되는 하도구간내에서 측방유입량의 되어 유출수문곡선의 첨두유량, 첨두시간, 수문곡선의 형태등에 영향을 주므로 정확한 산정이 필요하며, 직접유출수문곡선에서 측방유입량은 지표유출에 의해 발생하므로 강우발생시 유역에서 하도까지 걸리는 도달시간의 산정이나 측방유입속도의 결정이 필요하다. 기존의 강우-유출 수문모형은 지표수흐름의 복잡한 메카니즘 및 수리특성을 규명하는데 어려움이 있다. 본 연구에서는 관측유입수문곡선 및 유출수문곡선을 이용하여 측방유입량을 산정하고, 하도구간으로 유입되는 기지의 측방유입량으로부터 수리학적 홍수추적을 위한 지배방정식인 Saint-Venant방정식의 수치해법중 하나인 양해법에 diffusing scheme을 적용하였다. 또한 하도 전구간에 동일한 측방유입속도로 유입될 경우와 하도중심을 기점으로 상류부와 하류부로 구분하여 두 구간의 측방유입속도가 다른 두가지 경우에 대해 측방유입속도를 역추정하였으며, 계산 유출 수문곡선과 관측 유출수문곡선을 비교$\cdot$분석함으로써 구성한 홍수추적모형에 대한 정확성과 타당성, 적용 가능성등을 검증하고자 하였다.

  • PDF

Estimation of Water Loss in Irrigation Canals through Field Measurement (현장 측정을 통한 관개용수로의 손실량 추정)

  • Lee, Yong-Jig;Kim, Phil-Shik;Kim, Sun-Joo;Keun, Jee-Yong;Joo, Uk-Jong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • Water losses in irrigation canals are mainly estimated as the sum of conveyance and delivery water loss. The losses occur via the evaporation, infiltration, gate operation and water distribution processing. Recently, the study regarding these water losses are not satisfactory enough, also delivery water loss has not been mainly considered on field design. The objective of this study is to investigate and analyze the volume of water loss in irrigation canals considering condition of actual farm land. A field measurement was performed at four research sites, which are managed by Korea Rural Community & Agriculture Corporation, to evaluate conveyance and delivery water loss for 2 years. The measurement was performed by canal type, size and designed flow using the inflow-outflow method at a major points such as start and end of each canal, derivation point of canal and inlet of paddy fields. Results of this study showed that water loss ratio in lateral canals was bigger than that of main canal unlike current design standard and the loss decrease as flow increase. The total of water loss ratio including conveyance and delivery water loss in several irrigation canals ranged between 33.25 and 45.0%.

A Streamfiow Network Model for Daily Water Supply and Demands on Small Watershed (II) - Model Development - (중소유역의 일별 용수수급해석을 위한 하천망모형의 개발(II) -모형의 구성-)

  • 허유만;박창언;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.23-32
    • /
    • 1993
  • This paper describes the background and the development of a hydrologic network flow model. The model was development to simulate daily water demand and supply for selected stream reaches within a watershed, and used as a tool for evaluating, simulating, and planning a water resources system. The proposed network flow model considers daily runoff from subareas, various water demands, and diversion structures within each subarea. Daily streamflow at a reach is simulated after balancing the water demands from subareas. The lateral inflow from subareas is simulated using a modified tank model. Total water demands consist of the daily demands for agricultural, domestic, industrial, livestock, fishery, and environmental uses within a rural district. The return flow, diversions from sources and storage components such as reservoirs were also incorporated into the mode l . The developed model is a generalized version that may be applied to different combinations of river reaches for a given system. This may help potential users identify areas where water supply does not suffice the demands for different time horizons.

  • PDF

A Channel Flood Routing by the Analytical Diffusion Model (해석적 확산모델을 이용한 하도홍수추적)

  • 유철상;윤용남
    • Water for future
    • /
    • v.22 no.4
    • /
    • pp.453-461
    • /
    • 1989
  • The analytical diffusion model is first formulated and its characteristics are critically reviewed. The flood events during the 1986-1988 flood seasons i the IHP Pyungchang Representative Basin are routed by this model and are compared with those by the kinematic wave model. The results showed that the analytical diffusion model simulates the observed flood events much better than the analytical kinematic wave model. The present model is proven to be an excellent means of taking the backwater effect due to lateral inflow or down river stage variations into consideration in channel routing of flood flows. It also requires much less effort and computing time at a desired station compared to any other reliable flood routing methods.

  • PDF

Comparison of Growth Characteristics and Ginsenoside Content of Ginseng (Panax ginseng C. A. Meyer) Cultivated with Greenhouse and Traditional Shade Facility (비닐하우스와 관행재배 인삼의 생육특성 및 진세노사이드 함량 비교)

  • Lee, Sung-Woo;Kim, Gum-Sook;Hyun, Dong-Yun;Kim, Yong-Burm;Kim, Jang-Wook;Kang, Seung-Won;Cha, Seon-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.3
    • /
    • pp.157-161
    • /
    • 2011
  • Growth characteristics, root yield and ginsenoside contents of 3-year-old ginseng in greenhouse shaded by $30^{\circ}$ sloped-curtain made of aluminum were compared to traditional shade facility in order to develop cultural practice for organic ginseng. Light transmittance ratio in greenhouse with $30^{\circ}$ sloped-curtain shade was distinctly lower than that of traditional shade from sunrise to 9 a.m., while its ratio in greenhouse was higher than traditional shade since 9 a.m. due to the reflection of light. Air temperature of greenhouse was $1.3^{\circ}C$ higher than that of traditional shade on the first ten days of August due to more reflected light. Root yield of greenhouse was 44% higher than that of traditional cultivation because of the inflow of reflected light and the decrease of disease of Alternaria and Anthracnose by blocking rainfall. Dry matter partitioning ratio of rhizome and lateral root were increased in ginseng cultivated at greenhouse due to longer survival time in leaf than traditional cultivation. Total ginsenoside contents cultivated at greenhouse was decreased in the part of taproot, while it was increased in the part of lateral and fine root compare to traditional cultivation. Individual ginsenoside contents between greenhouse and traditional cultivation showed significant difference more frequent in fine root than taproot and lateral root. Total ginsenoside contents including $Rb_1$, $Rb_2$, Rc, Rd, Re, Rf, $Rg_1$, and $Rg_2$ in whole root of 3-year-old ginseng did not showed significant difference by greenhouse and traditional cultivation.

The Effect of the Chemical Lateral Boundary Conditions on CMAQ Simulations of Tropospheric Ozone for East Asia (동아시아지역의 CMAQ 대류권 오존 모의에 화학적 측면 경계조건이 미치는 효과)

  • Hong, Sung-Chul;Lee, Jae-Bum;Choi, Jin-Young;Moon, Kyung-Jung;Lee, Hyun-Ju;Hong, You-Deog;Lee, Suk-Jo;Song, Chang-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.581-594
    • /
    • 2012
  • The goal of this study is to investigate the effects of the chemical lateral boundary conditions (CLBCs) on Community Multi-scale Air Quality (CMAQ) simulations of tropospheric ozone for East Asia. We developed linking tool to produce CLBCs of CMAQ from Goddard Earth Observing System-Chemistry (GEOS-Chem) as a global chemistry model. We examined two CLBCs: the fixed CLBC in CMAQ (CLBC-CMAQ) and the CLBC from GEOS-Chem (CLBC-GEOS). The ozone fields by CMAQ simulation with these two CLBCs were compared to Tropospheric Emission Spectrometer (TES) satellite data, ozonesonde and surface measurements for May and August in 2008. The results with CLBC-GOES showed a better tropospheric ozone prediction than that with CLBC-CMAQ. The CLBC-GEOS simulation led to the increase in tropospheric ozone concentrations throughout the model domain, due to be influenced high ozone concentrations of upper troposphere and near inflow western and northern boundaries. Statistical evaluations also showed that the CLBC-GEOS case had better results of both the index of Agreement (IOA) and mean normalized bias. In the case of IOA, the CLBC-GEOS simulation was improved about 0.3 compared to CLBC-CMAQ due to the better predictions for high ozone concentrations in upper troposphere.

Effect of the Ventilation Method on the Growth and Quality of Melon (Cucumis melo L.) in Greenhouse of Tunnel Type (터널형 하우스에서 환기방법이 참외의 생육 및 품질에 미치는 영향)

  • 신용습;연일권;도한우;서동환;배수곤;최성국;최부술
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.187-193
    • /
    • 1996
  • This experiment was conducted to investigate the influence of temperature variation by the different ventilation methods on the growth and quality of oriental melon in greenhouse of tunnel type 1. The dropping effect in temperature by ventilation types was best at type 3 and those of type 2, type 1 were in order. 2. The temperature distribution in type 3 was uniformed as air- inflow and air- outflow by wind ventilation were easier than others. Whereas the temperature of type 1 having lateral ventilation hole and type 2 having the zenith ventilation tube and lateral ventilation hole was ascended, because small ventilation area of ventilation tube and hole could not make the gravity and wind ventilation successfully. 3. When compared with air amount of three types ventilated by the temperature difference of outside and inside of tunnel type house, that of type 3 was more than those of type 1 and type 2. 4. Type 3 was better than type 2 and type 1 in lear numbers, leaf area, fruit weight, flesh thickness, malformed fruit rate, and marketable fruit rate. 5. Marketable fruit rate of all treatment at each harvesting stages was rised, as goes to the latter periods.

  • PDF

Influence of Pore Pressure Behind a Subsea Tunnel on Its Stability (터널 배면의 간극수압이 해저터널의 안정성에 미치는 영향)

  • You, Kwang-Ho;Lee, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.355-363
    • /
    • 2006
  • In this study, it was analyzed how the pore pressure behind a subsea tunnel influences on the stability of the tunnel. The tunnel is located in the soft rock layer, and a soft sandy layer and weathered soil layer are located on the top of it. Coupled numerical analyses are performed for both drained and undrained condition with varying coefficients of lateral earth pressure. In the case of undrained conditions, the stability of the tunnel was analyzed with different thicknesses of shotcrete. On the other hand, a sensitivity analysis was performed with different hydraulic conductivities and porosities of the shotcrete for the drained conditions. The stability of a subsea tunnel was evaluated in terms of safety factor suggested by You et al.(2000, 2001, 2005) based on the shear strength reduction technique. In this paper, the safety factor of a tunnel was calculated under steady state flow condition during hydro-mechanical coupled analysis. As a result, it was found that the stability of a subsea tunnel could be rather increased by allowing a proper amount of groundwater inflow into a subsea tunnel.

Depositional Processes of Fine-Grained Sediments and Foraminiferal Imprint of Estuarine Circulation by Summer Floods in Yoja Bay, Southern Coast of Korea

  • Lee, Yeon-Gyu;Jung, Kyu-Kui;Woo, Han-Jun;Chu, Yong-Shik
    • Journal of the korean society of oceanography
    • /
    • v.35 no.2
    • /
    • pp.109-123
    • /
    • 2000
  • Depositional processes of fine-grained sediments were investigated on the basis of sediment transport vector analysis and identification of benthic foraminiferal assemblages in Yoja Bay, southern coast of Korea. The bay is a semi-enclosed embayment where extensive mud flats occur with a width up to about 4 km. Most surface sediments are poorly sorted (sorting values: 1.9-3.0 ${\phi}$) mud and silt (mean grain size: 6.0-8.7 ${\phi}$), except for the tidal inlets with basement rocks locally exposed. Grain-size distribution shows a fining tendency toward the basin center near the Yoja Island, implying a possible existence of turbidity maximum and relatively rapid settling of fine-grained sediments. The agglutinated foraminiferal taxa are dominant in the inner bay and decrease in abundance toward the mouth of the bay. Species diversities are higher in the outer bay, due to mixing of the offshore faunas with those of the bay. Four groups of benthic foraminiferal assemblages, identified by cluster analysis, represent the bay. Biofacies I and ll with relatively lower diversities are dominated by Ammobaculites exiguus and Ammonia beccarii, suggestive of influx of fresh water. In contrast, biofacies III and IV with relatively higher diversities include increased amounts of calcareous genus Elphidium and Quinquelocuzina, accounting for strong influence of sea water from the offshore. The fluvial discharge in summer floods appears to develop a bay-wide, clockwise lateral circulation in Yoja Bay, a typical of well-mixed estuaries. Accordingly, the foraminiferal assemblages of the surface sediments well show a sign of this circulation. The dominant inflow of the offshore water into the western part of the bay has resulted in more extensive muddy tidal flats compared to the eastern narrower counterpart.

  • PDF