• Title/Summary/Keyword: Lateral dynamic model

Search Result 314, Processing Time 0.022 seconds

A Study on Robust Trajectory Tracking Control of a Skid Steering Robots (미끄럼 조향 로봇의 강인한 궤적 추종 제어에 관한 연구)

  • Baek, Woon-Bo;Kim, Won-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.121-127
    • /
    • 2010
  • We consider the robust trajectory tracking control problem for a skid steering mobile robots. A dynamic model is derived accounting for the effects of wheel skidding. The control design utilizes the dynamic feedback linearization techniques, so as to obtain a predictable behavior for the instantaneous center of rotation thus preventing excessive skidding. The additive controller using the sliding mode type is then robustified against the unmodelled dynamics and parameter uncertainty. Simulation results show the good performances under excessively uncorrected estimations of the longitudinal forces and the lateral resistive forces caused by the skidding of the wheels in tracking trajectories.

A Study on the Engine/Brake integrated VDC System using Neural Network (신경망을 이용한 엔진/브레이크 통합 VDC 시스템에 관한 연구)

  • Ji, Kang-Hoon;Jeong, Kwang-Young;Kim, Sung-Gaun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.414-421
    • /
    • 2007
  • This paper presents a engine/brake integrated VDC(Vehicle Dynamic Control) system using neural network algorithm methods for wheel slip and yaw rate control. For stable performance of vehicle, not only is the lateral motion control(wheel slip control) important but the yaw motion control of the vehicle is crucial. The proposed NNPI(Neural Network Proportional-Integral) controller operates at throttle angle to improve the performance of wheel slip. Also, the suggested NNPID controller performs at brake system to improve steering performance. The proposed controller consists of multi-hidden layer neural network structure and PID control strategy for self-learning of gain scheduling. Computer Simulation have been performed to verify the proposed neural network based control scheme of 17 dof vehicle dynamic model which is implemented in MATLAB Simulink.

A Design of Adaptive Steering Controller of AGV using Immune Algorithm

  • Lee, Chang-Hoon;Lee, Jin-Woo;Lee, Kwon-Soon;Lee, Young-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.120.3-120
    • /
    • 2002
  • 1. Introduction $\textbullet$ Immune system is an evolutionary biological system to protect innumerable foreign materials such as virus, germ cell, and etc. Immune algorithm is the modeling of this system's response that has adaptation and reliableness when disturbance occur. $\textbullet$ In this paper, Immune algorithm is applied to the Steering Controller of AGV in container yard. $\textbullet$ And then the computer simulation result from the viewpoint of yaw rate and lateral displacement is analyzed and compared with result of conventional PID controller. 2. Dynamic Modeling of AGV $\textbullet$ Dynamic modeling has high degree of freedom. But, basic assumptions of this model are that the center of gravity(CG)...

  • PDF

Seismic vulnerability evaluation of a 32-story reinforced concrete building

  • Memari, A.M.;Motlagh, A.R. Yazdani;Akhtari, M.;Scanlon, A.;Ashtiany, M. Ghafory
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.1-18
    • /
    • 1999
  • Seismic evaluation of a 32-story reinforced concrete framed tube building is performed by checking damageability, safety, and toughness limit states. The evaluation is based on Standard 2800 (Iranian seismic code) which recommends equivalent lateral static force, modal superposition, or time history dynamic analysis methods to be applied. A three dimensional linearly elastic model checked by ambient vibration test results is used for the evaluation. Accelerograms of three earthquakes as well as linearly elastic design response spectra are used for dynamic analysis. Damageability is checked by considering story drift ratios. Safety is evaluated by comparing demands and capacities at the story and element force levels. Finally, toughness is studied in terms of curvature ductility of members. The paper explains the methodology selected and various aspects in detail.

Corner Braking Test and Simulation for Development of VDC System (VDC장치 개발을 위한 코너제동 실험 및 시뮬레이션)

  • 이창노;박혁성;김영관
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.211-216
    • /
    • 2003
  • The influence of braking force generated by one tire on vehicle dynamics was investigated by simulation and ground test. A 8 d. o. f vehicle model was developed for simulation. And a special device to apply brake pressure to individual wheel was built for vehicle test. As a result of corner braking test on straight driving, the dynamic responses such as yawrate, lateral acceleration and roll angle were produced in the vehicle, which were in a good agreement to the simulation results. This shows that comer braking used in VDC system can control vehicle dynamics to improve controllability and directional stability.

Analysis of Dynamic Characteristics for Concept Design of Independent-Wheel Type Ultra-High-Speed Train (독립차륜형 초고속 열차 개념 설계안의 동특성 해석)

  • Lee, Jin-Hee;Kim, Nam-Po;Sim, Kyung-Seok;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • In this paper, a concept design of a rail type ultra-high-speed train is proposed and its dynamic characteristics are analyzed. Instead of the existing solid axle, a new type bogie system and independently rotating wheels are applied in the proposed train. In order to analyze the dynamic characteristics, a multibody dynamic model of a vehicle is developed and the basic validity is verified by eigenvalue analysis. Also, it is shown that the critical speed is improved in comparison to that of existing high-speed train model HEMU-430X. Finally, through 7000R curved track driving analysis at a speed of 550 km/h, the lateral force of the wheels and the derailment quotient are estimated and the applicability of the new concept railway vehicle is confirmed.

Dynamic responses on traditional Chinese timber multi-story building with high platform base under earthquake excitations

  • Zhang, Xicheng;Ma, Hui;Zhao, Yanli;Zhao, Hongtie
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.331-345
    • /
    • 2020
  • The multi-story timber structure with high platform base is one of the important architectural types in the traditional Chinese buildings. To study the dynamic characteristics and seismic responses on this kind of traditional structure, the 3-D finite element models of Xi'an drum tower which included the high platform base, upper timber structure and whole structure was established considering the structural form and material performance parameters of the structure in this study. By the modal analysis, the main frequencies and mode shapes of this kind of traditional building were obtained and investigated. The three kinds of earthquake excitations included El-Centro wave, Taft wave and Lanzhou wave were separately imposed on the upper timber structure model and the overall structure model, and the seismic responses on the tops of columns were analyzed. The results of time history analysis show that the seismic response of the upper timber structure is obviously amplified by high platform base. After considering the effect of high platform base, the mean value on the lateral displacement increments of the top column in the overall structure is more than 20.478% and the increase of dynamic coefficients was all above 0.818 under the above three different earthquake excitations. Obviously, it shows that the existence of high platform base has a negative influence on the seismic responses of upper timber structure. And the high platform base will directly affect the safety of the upper timber structure. Therefore, the influence of high platform base on the dynamic response of its upper timber structure cannot be neglected.

Synthesis of a flight control system via nonlinear model matching theory

  • Uchikado, Shigeru;Kobayashi, Nobuaki;Osa, Yasuhiro;Kanai, Kimio;Nakamizo, Takayoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.659-664
    • /
    • 1994
  • In this paper we deal with a synthesis of flight control system via nonlinear model matching theory. First, the longitudinal and lateral-directional equations of aircraft motion an CCV mode are considered except the assumption "variations on steady straight flight due to disturbances are very small". Next, a design method of the dynamic model matching control system based on Hirschorn's Algorithm is proposed to the above nonlinear system. Finally, the proposed control system is applied to the small sized, high speed aircraft, T-2 on CCV mode and numerical simulations are shown to justify the proposed scheme.ed scheme.

  • PDF

Effect of Stiffness and Strength Degrading Model on Evaluating the Response Modification Factor (강성 및 강도저하 모델이 반응수정계수 산정에 미치는 영향 평가)

  • 오영훈;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.25-32
    • /
    • 1998
  • Most recent seismic design codes include Response Modification Factor(RMF) for determining equivalent lateral forces. The RMF is used to reduce the linear elastic design spectrum to account for the energy dissipation capacity, overstrength and damping of the structure. In this study the RMF is defined as the ratio of the absolute maximum linear elastic base shear to the absolute maximum nonlinear base shear of a structure subject to the same earthquake accelerogram. This study investigates the effect of hysteretic model, as well as target ductility ratio and natural period on duct based RMF using nonlinear dynamic analyses of the SDOF systems. Special emphasis is given to the effects of the hysteretic characteristics such as strength deterioration and stiffness degradation. Results indicate that RMFs are dependent on ductility, period and hysteretic model.

  • PDF

Active shape control of a cantilever by resistively interconnected piezoelectric patches

  • Schoeftner, J.;Buchberger, G.
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.501-521
    • /
    • 2013
  • This paper is concerned with static and dynamic shape control of a laminated Bernoulli-Euler beam hosting a uniformly distributed array of resistively interconnected piezoelectric patches. We present an analytical one-dimensional model for a laminated piezoelectric beam with material discontinuities within the framework of Bernoulli-Euler and extent the model by a network of resistors which are connected to several piezoelectric patch actuators. The voltage of only one piezoelectric patch is prescribed: we answer the question how to design the interconnected resistive electric network in order to annihilate lateral vibrations of a cantilever. As a practical example, a cantilever with eight patch actuators under the influence of a tip-force is studied. It is found that the deflection at eight arbitrary points along the beam axis may be controlled independently, if the local action of the piezoelectric patches is equal in magnitude, but opposite in sign, to the external load. This is achieved by the proper design of the resistive network and a suitable choice of the input voltage signal. The validity of our method is exact in the static case for a Bernoulli-Euler beam, but it also gives satisfactory results at higher frequencies and for transient excitations. As long as a certain non-dimensional parameter, involving the number of the piezoelectric patches, the sum of the resistances in the electric network and the excitation frequency, is small, the proposed shape control method is approximately fulfilled for dynamic load excitations. We evaluate the feasibility of the proposed shape control method with a more refined model, by comparing the results of our one-dimensional calculations based on the extended Bernoulli-Euler equations to three-dimensional electromechanically coupled finite element results in ANSYS 12.0. The results with the simple Bernoulli-Euler model agree well with the three-dimensional finite element results.