• Title/Summary/Keyword: Lateral Stiffness

Search Result 906, Processing Time 0.022 seconds

Analysis on Behavior Characteristics of Underground Facility Backfilled with Clsm According to Adjacent Excavation (CLSM으로 되메움된 지하 인프라 매설물의 근접 굴착에 따른 거동특성 분석 )

  • Seung-Kyong, You;Nam-Jae, Yu;Gigwon, Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.101-109
    • /
    • 2022
  • This study describes the results of model experiment to analyze the effect of backfill material types on the behavior of underground facility. In the model experiment, backfill materials around the existing underground facility were applied with soil (Jumunjin standard sand) and CLSM. The displacement of underground facility was analyzed for each excavation stage considering the separation distance between the excavation surface and the backfill area based on the experimental results. When soil was applied as a backfill material, the soil on the back of the excavation surface collapsed by excavation and formed an angle of repose, and the process of slope stability was repeated at each excavation stage. In addition, the displacement of underground facility began to occur in the excavation stage that the failure line of soil passes the installation location of the underground facility. When CLSM was applied as a backfill material, there was almost no horizontal and vertical displacement of the ground regardless of the separation distance from the excavation surface even when excavation proceeded to the backfill depth. Therefore, this result showed that it can have a resistance effect against the lateral earth pressure generated and the collapse of the original ground by adjacent excavation, if a backfill material with high stiffness such as CLSM is applied.

Development of Self-centering Viscous Damper System for Seismic Retrofit of Ordinary Concentrically Braced Frame (보통중심가새골조의 내진보강을 위한 자가복원형 점성감쇠기 시스템 개발)

  • Do Yeon Kim;Hyuck Soon Choi;Joohyung Kang;Yongsun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.70-78
    • /
    • 2023
  • The ordinary concentrically braced frame has an advantage of having simple design procedure. For this reason, it has been widely used for the small-sized frame structures subject to moderate or lower magnitude earthquake, even though its seismic performance against the earthquake load is not much effective compared to that of other frame systems. To enhance seismic performance of the ordinary concentrically braced frame where the bracing has a weakness for compressive behavior under lateral earthquake, seismic retrofitting by viscous damper has been commonly introduced. However, the viscous damper, itself, generally does not have stiffness for restoring the structure to the original position. This may cause residual displacement to the structure. In this paper, a self-centering viscous damper system in which upper and lower beams having flexural rigidity play a role as a nonlinear-elastic spring, restoring the spring-damper system subject to external displacement history to its original location, is developed. The numerical analysis for a simplified frame structure shows how including the developed self-centering viscous damper system leads to an enhanced seismic performance of the frame structure through energy dissipation during earthquake excitation.

Comparative Biomechanical Study of Stiffness on Ligamentous Attached Sites of Distal Femur - Experimental Laboratory Study on Cadaver Femora - (원위 대퇴골 인대 부착부의 강도 비교 - 사체의 대퇴골에 행한 실험적 연구 -)

  • Kwak, Ji-Hoon;Sim, Jae-Ang;Yang, Sang-Hoon;Kim, Dong-Hee;Lee, Beom-Koo
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.8 no.1
    • /
    • pp.26-32
    • /
    • 2009
  • Purpose: This study was performed to compare the strength of ligamentous attached sites of cadaveric distal femur and to obtain reliable biomechanical data to use in ligamentous reconstruction or augmentation. Materials and Methods: Fifteen cadaveric distal femurs were used for this study. After measuring the bone density, 5.0 mm cannulated screw (Experiment 1) or reconstructed porcine ligament (Experiment 2) was inserted into the each ligamentous attached sites of anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial collateral ligament (MCL) and lateral collateral ligament (LCL). In experiment 2, reconstructed porcine graft was fixed with bioabsorbable screw in ligamentous insertion sites. And we measured the maximal pullout force of each ligamentous attached sites of cadaveric distal femur. Results: Average bone mineral density was $1.205{\pm}0.137\;g/cm^2$ in experiment 1, $1.236{\pm}0.089\;g/cm^2$ in experiment 2, which showed no statistically significant differences. In experiment 1, average pull-out strength of ACL, PCL, MCL and LCL group were $519.1{\pm}111.7$ N, $638.9{\pm}144.4$ N, $169.7{\pm}56.0$ N, $225.6{\pm}61.5$ N respectively. In experiment 2, the average pull-out strength were $310.6{\pm}31.0$ N, $379.9{\pm}47.4$ N, $104.0{\pm}14.4$ N, $131.5{\pm}21.9$ N respectively. In experiment 1, there was no significant difference between ACL and PCL group and between MCL and LCL group. However, the maximal pullout strength of MCL and LCL group were significantly lower than that of ACL and PCL group (p<0.01). Experiment 2 showed the same results of experiment 1. Conclusion: Because stiffness of MCL and LCL attached sites are much lower than that of ACL and PCL attached sites, we may consider augmented fixation in ligamentous reconstructions of MCL and LCL.

  • PDF

Influence of Column Aspect Ratio on the Hysteretic Behavior of Slab-Column Connection (슬래브-기둥 접합부의 이력거동에 대한 기둥 형상비의 영향)

  • Choi, Myung-Shin;Cho, In-Jung;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.515-525
    • /
    • 2007
  • In this investigation, results of laboratory tests on four reinforced concrete flat plate interior connections with elongated rectangular column support which has been used widely in tall residential buildings are presented. The purpose of this study is to evaluate an effect of column aspect ratio (${\beta}_c={c_1}/{c_2}$=side length ratio of column section in the direction of lateral loading $(c_1)$ to the direction of perpendicular to $c_1$) on the hysteretic behavior under earthquake type loading. The aspect ratio of column section was taken as $0.5{\sim}3\;(c_1/c_2=1/2,\;1/1,\;2/1,\;3/1)$ and the column perimeter was held constant at 1200mm in order to achieve nominal vertical shear strength $(V_c)$ uniformly. Other design parameters such as flexural reinforcement ratio $(\rho)$ of the slab and concrete strength$(f_{ck})$ was kept constant as ${\rho}=1.0%$ and $f_{ck}=40MPa$, respectively. Gravity shear load $(V_g)$ was applied by 30 percent of nominal vertical shear strength $(0.3V_o)$ of the specimen. Experimental observations on punching failure pattern, peak lateral-load and story drift ratio at punching failure, stiffness degradation and energy dissipation in the hysteresis loop, and steel and concrete strain distributions near the column support were examined and discussed in accordance with different column aspect ratio. Eccentric shear stress model of ACI 318-05 was evaluated with experimental results. A fraction of transferring moment by shear and flexure in the design code was analyzed based on the test results.

Mid-Term Results of Fixed Bearing Unicompartmental Knee Arthroplasty: Minimum 5-Year Follow-Up (고정형 슬관절 단일 구획 치환술의 중기 추시 결과: 최소 5년 추시)

  • Oh, Jeong Han;Joo, Il-Han;Kong, Dong-Yi;Choi, Choong-Hyeok
    • Journal of the Korean Orthopaedic Association
    • /
    • v.53 no.6
    • /
    • pp.498-504
    • /
    • 2018
  • Purpose: To evaluate the clinical and radiological outcomes, and the complications of unicompartmental knee arthroplasty (UKA) using a fixed bearing prosthesis after 5-year follow-up. Materials and Methods: Twenty-six knees (25 patients) that underwent fixed bearing UKA between May 2003 and August 2011 were included. The subjects were 3 males (3 knees) and 22 females (23 knees), and the average age was 63.5 years. The preoperative diagnosis was osteoarthritis (23 knees) and osteonecrosis (3 knees). The mean follow-up duration was 67 months (from 60 to 149 months). The clinical evaluation included pre- and postoperative American knee society knee and function score, and range of motion. The radiology evaluation included standing antero-posterior, lateral view, and fluoroscopic film to analyze the postoperative alignment and osteolysis. Results: The mean American Knee Society knee score and function score were improved from 42.0 and 57.5 to 87.9 and 85.0, respectively (p<0.001). The mean preoperative and postoperative range of motion was $132.9^{\circ}$ and $132.5^{\circ}$, respectively. The mean femorotibial angle were varus $0.5^{\circ}$ preoperatively and valgus $2.2^{\circ}$ postoperatively. A radiolucent line was observed in 2 knees; one knee had a stable implant, while in the other knee, patellofemoral arthritis was identified during UKA. Diffuse pain of the knee joint with tenderness of the medial joint line was identified at the follow-up, so conversion to total knee arthroplasty was recommended. No other complications, such as osteolysis, infections, postoperative stiffness, and dislocation, were encountered. Conclusion: The midterm results of fixed bearing UKA were clinically and radiologically satisfactory.

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.