• 제목/요약/키워드: Lateral Stability

검색결과 833건 처리시간 0.034초

차량의 선회시 주행 안정성 강화를 위한 ESP 시스템 개발 및 성능 평가 (Development and Performance Evaluation of ESP Systems for Enhancing the Lateral Stability During Cornering)

  • 부광석;송정훈
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1276-1283
    • /
    • 2006
  • This study proposes two ESP systems which are designed to enhance the lateral stability of a vehicle. A BESP uses an inner rear wheel braking pressure controller, while a EBESP employs an inner rear wheel and front outer wheel braking pressure controller. The performances of the BESP and EBESP are evaluated for various road conditions and steering inputs. They reduce the slip angle and eliminate variation in the lateral acceleration, which increase the controllability and stability of the vehicle. However EBESP enhances the lateral stability and comfort. A driver model is also developed to control the steer angle input. It shows good performances because the vehicle tracks the desired lane very well.

편대비행에서 후방 항공기의 위치 안전성 분석 (Positional Stability Analysis of Trailing Aircraft in Formation Flight)

  • 조환기
    • 한국항공운항학회지
    • /
    • 제24권2호
    • /
    • pp.19-24
    • /
    • 2016
  • Positional stability analysis based on aerodynamic forces and induced moments of formation flight using two small aircraft models is presented. The aerodynamic force and moments of the trailing aircraft are analyzed in the aspect of flight stability. The induced moments with the change of local flow direction by wing-tip vortex from the leading aircraft can affect the flight positional stability of aircraft in closed formation flight. Aerodynamic forces and moments of trailing aircraft model are measured by 6-component internal balance at the 49 locations with vertical and lateral space between two aircraft models. Results are shown that the positional stability of trailing aircraft in formation flight can be analyzed by positional stability derivatives with vertical and lateral space. It is concluded that flying positions can be important factors for aircraft position stability due to induced aerodynamic force and moments with vertical and lateral spacing by the variation of flow pattern from the leading aircraft in formation flight.

Reliability analysis for lateral stability of tongwamen bridge

  • Pan, Sheng-Shan;Lei, Shi;Tan, Yong-Gang;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.423-434
    • /
    • 2011
  • Tongwamen Bridge is a critical link between Dongmen Island and the land in Shipu town, Zhejiang province, China. It is a 238 m span, half-through, concrete-filled steel tubular (CFST) X-type arch bridge. The width of the deck is only 10 m, yielding a width-to-span ratio of 1/23.8. The plane truss type section rib was adopted, which made of two CFST chords and web member system. The lateral stability is the key issue to this bridge. However, the existing researches on Tongwamen Bridge's lateral stability are all the deterministic structural analysis. In this paper, a new strategy for positioning sampling points of the response surface method (RSM), based on the composite method combining RSM with geometric method for structural reliability analysis, is employed to obtain the reliability index of lateral stability. In addition the correlated parameters were discussed in detail to find the major factors. According to the analysis results, increasing the stiff of lateral braces between the arch ribs and setting the proper inward-incline degree of the arch rib can enhance obviously the reliability of lateral stability. Moreover, the deck action of non-orienting force is less than the two factors above. The calculated results indicate that the arch ribs are safe enough to keep excellent stability, and it provides the foundation that the plane truss rib would be a competitive solution for a long-span, narrow, CFST arch bridge.

불안정한 면에서의 견갑골 안정화 운동이 외측상과염에 미치는 영향-사례연구 (The Effects of Scapular Stability Exercise with the Unstable Surface on Pain Relief of Lateral Epicondylitis : Case Study)

  • 박현주;배혜진;박희정;박지환
    • 대한정형도수물리치료학회지
    • /
    • 제15권1호
    • /
    • pp.58-63
    • /
    • 2009
  • Purpose: The purpose of this study is to figure out that the scapular stability exercise on unstable position can effect on the pain relief of the patient with lateral epicondylitis. Methods: The subject was 35 year old male, diagnosed as lateral epicondylitis. This patient was controled to do scapular stability exercise with crawling position on unstable surface, changing elbow movement from flexion to extension for 4 weeks, 5 times a week, 20 times in total. We used VAS to find the degree of pain and Cozen's test, Mill's test and Resisted middle finger test were determined for the measurement of epicondylitis changed. Results: The following is the result of this study. 1. Pain on lateral epicondylitis was relived from VAS 7 to VAS 0. 2. There were improvements that the results of tests for epicondylitis, Cozen's test, Mill's test and Resisted middle finger test, changed positive into negative signs. Conclusion: The result of this study indicates that the application scapular stability exercise on the unstable surface to the patient with lateral epicondylitis can relief the pain degree on the lateral epicondylitis and be used as one of lateral epicondylitis treatments.

  • PDF

교대기호말뚝의 안정 (The Stability of Foundation Piles for Abutment)

  • 홍원표;안종필
    • 한국지반공학회지:지반
    • /
    • 제7권2호
    • /
    • pp.67-82
    • /
    • 1991
  • 불안정한 요반지반에 기초말뚝을 사용하여 교대를 축조할 경우 뒤채움에 의한 편재하중으로 인하 여 기초말뚝과 교대 에 수평변위가 발생되는 경우가 종종 발생되고 있다. 이 경우 교대 배면의 뒤 채움 은 하부 원지반에 편재하중을 작용시키게 되므로 결국 하부지반이 연약할 경우 측방유동이 발생되게 되며 기초말뚝은 측방유동으로 인하여 유발되는 측방토압을 받게 된다. 그러나 한편으로는 이들 기초말뚝은 지반의 측방유동에 저항하여 사면의 안전성을 증대시키는데 기여하기도 한다. 이러한 줄말뚝이 설치된 사면의 안정문제는 지반과 말뚝의 상호작용의 문제로 기초말뚝의 안정과 사면안정의 두가지 해석이 모두 실시되어야 한다. 결국 기초말뚝을 사용한 교대의 전체의 안정은 사면과 말뚝모두의 안정이 확보되었을때만가능한것이다. 본 연구에서는 이러한 측방유동이 발생될 가능성이 있는 사면지반에 말뚝을 일정간격으로 설치한 위에 교대가 설치되어 있는 경우의 합리적 해석법을 확립시켰다. 이 해석법을 한 해석예에 적용하여 검토한 결과 교대의 안정 에 영향을 미치는 여러 요소를 조사하였다. 특히 편재하중으로 인한 지반의 측방유동으로 수평변위의 피해를 받는 교대 기초말뚝의 구속상태에 대한 규명을 할 수 있었다.

  • PDF

Seismic lateral earth pressure analysis of retaining walls

  • Ismeik, Muhannad;Shaqour, Fathi
    • Geomechanics and Engineering
    • /
    • 제8권4호
    • /
    • pp.523-540
    • /
    • 2015
  • Based on limit equilibrium principles, this study presents a theoretical derivation of a new analytical formulation for estimating magnitude and lateral earth pressure distribution on a retaining wall subjected to seismic loads. The proposed solution accounts for failure wedge inclination, unit weight and friction angle of backfill soil, wall roughness, and horizontal and vertical seismic ground accelerations. The current analysis predicts a nonlinear lateral earth pressure variation along the wall with and without seismic loads. A parametric study is conducted to examine the influence of various parameters on lateral earth pressure distribution. Findings reveal that lateral earth pressure increases with the increase of horizontal ground acceleration while it decreases with the increase of vertical ground acceleration. Compared to classical theory, the position of resultant lateral earth force is located at a higher distance from wall base which in turn has a direct impact on wall stability and economy. A numerical example is presented to illustrate the computations of lateral earth pressure distribution based on the suggested analytical method.

T-50 가로-방향축 비행제어법칙 설계 및 궤환이득의 변화에 따른 항공기 동특성에 관한 연구 (A Study on the Flight Control Law and the Dynamic Characteristic about Variation of Feedback Gains of T-50 Lateral-Directional Axis)

  • 김종섭;황병문;강영신
    • 제어로봇시스템학회논문지
    • /
    • 제12권7호
    • /
    • pp.621-630
    • /
    • 2006
  • The T-50 advanced trainer aircraft combines advanced aerodynamic features and a fly-by-wire flight control system in order to produce a stability and highly maneuverability. The flight control system both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. The T-50 employs the RSS concept in order to improve the aerodynamic performance in longitudinal axis and the longitudinal control laws employ the dynamic inversion with proportional-plus-integral control method. And, lateral-directional control laws employ the blended roll system both beta-betadot feedback and simple roll rate feedback with proportional control method in order to guarantee aircraft stability. This paper details the design process of developing lateral-directional control laws, utilizing the requirement of MIL-F-8785C and MIL-F-9490D. And, this paper propose the analysis of aircraft characteristics such as dutch-roll mode, roll mode, spiral mode, gain and phase margin about gains for lateral-directional inner loop feedback.

Reliability analyses of a prototype soil nail wall using regression models

  • Sivakumar Babu, G.L.;Singh, Vikas Pratap
    • Geomechanics and Engineering
    • /
    • 제2권2호
    • /
    • pp.71-88
    • /
    • 2010
  • Soil nailing technique is being widely used for stabilization of vertical cuts because of its economic, environment friendly and speedy construction. Global stability and lateral displacement are the two important stability criteria for the soil nail walls. The primary objective of the present study is to evaluate soil nail wall stability criteria under the influence of in-situ soil variability. Finite element based numerical experiments are performed in accordance with the methodology of $2^3$ factorial design of experiments. Based on the analysis of the observations from numerical experiments, two regression models are developed, and used for reliability analyses of global stability and lateral displacement of the soil nail wall. A 10 m high prototype soil nail wall is considered for better understanding and to highlight the practical implications of the present study. Based on the study, lateral displacements beyond 0.10% of vertical wall height and variability of in-situ soil parameters are found to be critical from the stability criteria considerations of the soil nail wall.

초고층 건물의 시공 중 안정성 검토를 위한 시공단계해석 (Construction Sequence Analysis for Checking Stability in High-Rise Building under Construction)

  • 김재요
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.618-623
    • /
    • 2008
  • Due to recent trends of the atypical plan shapes and the zoning construction in high-rise buildings, the building stability under construction is arising as an important issue for design and construction plan. To ensure the stability under construction, the differential column shortening and the lateral movements with unbalanced distributions of self-weight of structure members and the load flows before completion of member connections and lateral load resisting system should be checked by construction sequence analysis. This paper presents the scheme of zone-based construction sequence analysis, to check the stability of high-rise building under construction. This scheme is applied to the construction sequence analysis for real high-rise building under construction.

  • PDF

20대 연령에서 다양한 감각 조건에 따른 안정성 한계의 비교 (A Comparision of the Limits of Stability at Different Sensory Conditions in 20 Years of Age)

  • 권오윤;최흥식
    • 대한물리치료과학회지
    • /
    • 제3권2호
    • /
    • pp.963-973
    • /
    • 1996
  • The purpose of this study was to evaluate and compare the limits of stability(LOS) at different sensory conditions in normal 20 years of age. The LOS was measured at stable surface, and unstable surface and the subjects stood with the feet contacted and 4 inches between the feet with the eyes open and the eyes closed. In this study, 20 physical therapy major subjects were evaluated at Wonkwang Public Health Junior College. In this study applied the paired t-test, and Kruskal-Wallis 1-way ANOVA to determine the statistical significance of results at 0.01 level of significance. The results were as follows: 1. The mean of lateral limits of stability was b.67 degree at stable surface with the eyes open and standing with the feet contacted. 2. The mean of anteroposterior limits of stability was 9.78 degree at stable surface with the eyes open and standing with the feet contacted. 3. The mean of lateral limits of stability was 15.10 degree at stable surface with the eyes open and standing with 4 inches between the feet. 4. The mean of anteroposterior limits of stability was 11.72 degree at stable surface with the eyes open and standing with 4 inches between the feet. 5. The anterior-posterior and lateral limits of stability significantly decreased with the eyes closed(p<0.01). 6. The anterior-posterior and lateral limits of stability significantly decreased at unstable surface(p<0.01). 7. There was no significant difference of limits of stability as the height and foot length(p>0.01).

  • PDF