• Title/Summary/Keyword: Lateral Heat Loss

Search Result 29, Processing Time 0.024 seconds

Analysis of heat exchanger in the drying system using solar collector with evacuated tubes (진공관형 태양열 집열기를 이용한 건조장치의 열교환기 해석)

  • Kang, Hyung-Suk;Han, Young-Min;Lee, Gwi-Hyun;Lee, Sung-Joo;Yoon, Sae-Chang
    • New & Renewable Energy
    • /
    • v.2 no.1 s.5
    • /
    • pp.46-55
    • /
    • 2006
  • The performance enhancement of heat exchanger in the drying system using solar collector with evacuated tubes is analyzed. First, for this analysis, the heat loss from a reversed trapezoidal fin attached at the pipe is calculated as a function of convection characteristic number ratio, fin base length and fin tip length. Also, the optimum heat loss and fin tip length of the fin under certain conditions are presented. The overall surface effectiveness of the cylinder with reversed trapezoidal fins in the heat exchanger are shown as a function of half fin base height, fin lateral slope and fin tip length.

  • PDF

Optimization of an Asymmetric Trapezoidal Fin Based on the Fixed Fin Base Height (고정된 핀 바닥 높이에 기준한 비대칭 사다리꼴 핀의 최적화)

  • Song, Nyeon-Joo;Kang, Hyung-Suk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.45-54
    • /
    • 2012
  • Optimization of the asymmetric trapezoidal fin with various upper lateral surface slope is made using a two-dimensional analytic method. For the fixed fin base height, the optimum heat loss, fin length and effectiveness are represented as inner fluid convection characteristic number, fin base thickness, fin base height, fin shape factor and ambient convection characteristic number. For this optimum procedure, the optimum heat loss is defined as 95% of the maximum heat loss from the fin. One of the results shows that optimum heat loss and effectiveness seems independent of the fin shape factor while optimum fin length decreases almost linearly as the fin shape factor increases.

Performance Analysis of a Geometrically Asymmetric Trapezoidal Fin for an Enhanced Heat Exchanger (향상된 열교환기를 위한 기하학적 비대칭 사다리꼴 핀의 성능 해석)

  • Song, Nyeon-Joo;Kang, Hyung-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.24-31
    • /
    • 2011
  • Performance of the asymmetric trapezoidal fin with various upper lateral surface slopes is investigated by using the two-dimensional analytic method. For a fin base boundary condition, convection from the inner fluid to the inner wall, conduction from the inner wall to the fin base and conduction through the fin base are considered. Heat loss and fin efficiency are represented as a function of the fin base thickness, base height, inner fluid convection characteristic number, fin tip length and fin shape factor. One of the results shows that heat loss increases while fin efficiency decreases as the fin shape factor increases.

Experimental Study on Edge Flame Instabilities in Solid Rocket Combustion (고체로켓연소에서 에지화염 불안정성에 대한 실험적 연구)

  • Hwang Dong-Jin;Park Jeong;Kim Jeong-Soo;Kim Sung-Cho;Kim Tae-Kwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.279-282
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations are categorized into three: a growing-, a decaying-, and a harmonic-oscillation mode.

  • PDF

Effects of Burner Distance on Flame Characteristics at Low Strain Rate Counterflow Edge Flames (저 신장율 대향류 확산화염에서 화염 특성에 관한 버너 간격 효과)

  • Yun, Jin-Han;Keel, Sang-In;Hwang, Dong-Jin;Choi, Yun-Jin;Ryu, Jung-In;Park, Jeong
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.26-36
    • /
    • 2008
  • Experimental study is conducted to identify the existence of a shrinking flame disk and to clarify its flame characteristics through the inspection of critical mole fraction at flame extinction and edge flame oscillation at low strain rate flames. Experiments are made as varying global strain rate, velocity ratio, and burner distance. The transition from a shrinking flame disk to a flame hole is verified through gradient measurements of maximum flame temperature. The evidence of edge flame oscillation in flame disk is also provided through numerical simulation in microgravity. It is found at low strain rate flame disks in normal gravity that buoyancy effects are importantly contributing to lateral heat loss to burner rim, and is proven through critical mole fraction at flame extinction, edge flame oscillation, and measurements of flame temperature gradient along flame disk surface.

  • PDF

The Effect of Inside and Outside Fluids on the Optimization of a Reversed Trapezoidal Fin (역 사다리꼴 핀의 최적화에 미치는 내 외 유체의 영향)

  • Kang, Hyung-Suk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.14-22
    • /
    • 2007
  • A reversed trapezoidal fin with variable lateral surface slope is optimized using a two-dimensional analytic method. For a fin base boundary condition, convection from the inside fluid to the inside wall and conduction from the inside wall to the fin base are considered. Heat loss from the fin tip surface is not ignored. The maximum heat loss at the practical fin length, the corresponding optimum fin efficiency, fin length and fin base height are presented as a function of the fin inside and outside convection characteristic numbers. One of the results shows that the optimum fin shape becomes 'fatter and shorter' as the ratio of fin tip height to base height increases.

Augmented heat transfer in a rectangular duct with angled ribs (사각 덕트내 요철의 각도 변화에 따른 열전달 특성)

  • U, Seong-Je;Kim, Wan-Sik;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.530-541
    • /
    • 1998
  • Heat transfer augmentation in a rib-roughened duct is affected by the rib configurations, such as rib height, angle of attack, shape, rib to rib pitch, and aspect ratio of a duct. These have been the main subjects in studying the average heat transfer and the friction loss of the fully developed flow. Investigating distributions of local heat transfer coefficients and flow patterns in a duct with the rib turbulators is necessary to find the characteristics of heat transfer augmentation and to decide the optimal configurations of ribs. In the present study the numerical analyses and the mass transfer experiments are performed to understand the flow through a rib roughened duct and the heat transfer characteristics with various angles of attack of ribs. A pair of counter-rotating secondary flow in a duct has a main effect on the lateral distributions of local mass transfer coefficients. Downwash of the rotating secondary flow, reattachment of main flow between ribs and the vortices near ribs and wall enhanced the mass transfer locally up to 8 times of that in case of the duct without ribs.

An Analytical Investigation on the Build-up of the Temperature Field due to a Point Heat Source in Shallow Coastal Water with Oscillatory Alongshore-flow

  • Jung, Kyung-Tae;Kim, Chong-Hak;Jang, Chan-Joo;Lee, Ho-Jin;Kang, Sok-Kuh;Yjm, Ki-Dai
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.63-74
    • /
    • 2003
  • The build-up of the heat field in shallow coastal water due to a point source has been investigated using an analytical solution of a time-integral form derived by extending the solutions by Holley(1969) and also presented in Harleman (1971). The uniform water depth is assumed with non-isotropic turbulent dispersion. The alongshore-flow is assumed to be uni-directional, spatially uniform and oscillatory. Due to the presence of the oscillatory alongshore-flow, the heat build-up occurs in an oscillatory manner, and the excess temperature thereby fluctuates in that course and even in the quasi-steady state. A series of calculations reveal that proper choices of the decay coefficient as well as dispersion coefficients are critical to the reliable prediction of the excess temperature field. The dispersion coefficients determine the absolute values of the excess temperature and characterize the shoreline profile, particularly within the tidal excursion distance, while the decay coefficient determines the absolute value of the excess temperature and the convergence rate to that of the quasi-steady state. Within the e-folding time scale $1/k_d$ (where $k_d$ is the heat decay coefficient), heat build-up occurs more than 90% of the quasi-steady state values in a region within a tidal excursion distance (L), while occurs increasingly less the farther we go to the downstream direction (about 80% at 1.25L, and 70% at 1.5L). Calculations with onshore and offshore discharges indicate that thermal spreading in the direction of the shoreline is reduced as the shoreline constraint which controls the lateral mixing is reduced. The importance of collecting long-term records of in situ meteorological conditions and clarifying the definition of the heat loss coefficient is addressed. Interactive use of analytical and numerical modeling is recommended as a desirable way to obtain a reliable estimate of the far-field excess temperature along with extensive field measurements.

Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity (정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계)

  • Oh, Chang-Bo;Choi, Byung-Il;Kim, Jeong-Soo;Hamins, Anthony;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.